FOURTH-GENERATION LANGUAGES |ISSUE PAPER

BACKGROUND

Computers are designed to process, retrieve and store programmed information. Typicdly,
they can only respond to eectronic signas that correspond to binary numbers. Programming languages
are designed to trandate human language into commands that the computer can understand. There are
currently five “ generations’ or levels of languages available [1]. Machine language, or Firs- Generation
language, condsts solely of binary numbers. Machine languages are computer dependent and therefore
every type of computer has its own machine language. Assembly language, or Second- Generation
language, which came into use in the mid- 1950s, uses a shorthand notation of |etters and numbersto
communicate with the computer in place of binary groupings[2]. Assemblers are then utilized to
trandate the assembly language into machine language. Assembly languageis still computer- dependent
and therefore results in a unique assembly language for every type of machine. Higher Order language
(HOL), or Third-Generation language (3GL), which came into usein the 1960s, conssts of statements
which more closaly resemble the spoken language, and therefore are easier to read and write since they
require fewer statements per function. Specid programs, or compilers, must then trandate the HOL
statements to assembly or machine language. Expanding upon this, Fourth- Generation languages
(4GL9), or Very High Levd Languages (VHLL), a0 use ingtructions which resemble the spoken
language, but they dlow the programmers to define "what" they want the computer to do without
necessily tdling the computer "how" to do it. Typicdly, the compilers, or interpreters, for 4GLs are
not as efficient as HOL compilersin using available memory and processing speed. Findly, the highest
level of programming, Fifth-Generation languages (5GLs), would involve a computer which responds
directly to gpoken or written ingructions, or English language commands. There exist only afew 5GLs
or "naturd languages’', and they are typicaly used in artificid intdligence gpplications

DISCUSSION

Eighty percent of wegpon system and AlS applications are written in 3GLS. [2].
However, 3GLsrequire a specia program, or compiler, to trandate the HOL statementsinto
assembly or machine ingructions. Compilers are not as efficient in terms of memory utilization
or processing speed, so atradeoff between performance and ease is often required when
employing 3GLs. Additionaly, 3GLs require avast amount of code to provide the same
functiondity and are time consuming to debug. Hence, the necessity for the creation of 4GLS,
which capitalize on advanced techniques of programming while smplifying the man-machine
interfaces [3]. Currently, there are many 4GL s available, such as Oracle, Visicac, FOCUS,
RAMISII, and DBase 1V, and new ones are il appearing daily. The languages tend to fall
into four functional areas. Query and Report Generators, Graphic Languages, Database
management tools and Spreadsheets. As such, they typicaly have avery limited range of
goplication. Thisissue paper will address the productivity differences, anticipated and
experienced, between 3GLsand 4GLs.

[3]:

Provided below is a detailed discusson of many of the attributes associated with 4GLs

Ease of use:

Because the syntax of 4GLs closely reates to the humanlanguage syntax, it is eeder to
learn. Additiondly, due to the non-procedura nature of many of the languages, the
techniques for accomplishing things are aso smple, while the results are fast and
impressive. Fourth- Generation languages dso am to remove the use of unnecessary
acronyms, thereby dlowing users to expend their effort on the purpose of the
gpplication, vice being bogged down with extraneous requirements.

Limited range of functions:

AGLs are typicdly designed for alimited set of functions or specific gpplications. This
is becauses the product then becomes easier to use than afull programming language.
For example, Lotus 1-2-3 gained alarge number of users quickly because it made it
easy to manipulate Sporeadsheet data.

Restrictions of Options:

Higher leve languages often redtrict the options available to users of lower level
languages, such as the cgpability to modify themselves at executiontime. To
compensate for this, 4GLs permit automatic verification before testing.

Default Options:

A user of a4GL isnot required to pecify everything. Instead, a compiler or interpreter
is capable of making inteligent assumptions about what it thinks the user needs.
Therefore, while 4GLs often require that many parameters be specified, they aso
provide a default option if the user does not make a selection. This savestime and
debugging efforts.

Monologue and Dialogue:

With 4GL s, adiadogue occurs between the user and the computer. Thisalows for
more opportunities to catch errors asthey are being made. The software may ask the
user questions, sgnd errors, and flag incong stencies as the gpplication is being created.

Summary:

The objectives of 4GLs are: 1) to speed up the application-building process, 2) to make

goplications easy and quick to change, hence reducing maintenance cogt, 3) to minimize
debugging problems, 4) to be able to generate “bug-free’ code from high expressions of
requirements and 5) to make the language easy to use, so that the end users could solve their
own problems[3]. Fourth-Generation languages require far fewer lines of code than would a
3GL, and they dso employ awide variety of other tools such as screen interaction, filling in
forms or pand's, and computer aided graphics. The god isto alow the programmer to tell the

September 1996 2

computers “what-to-do” and not have to worry about telling the computers * how-to-do-it” (i.e.
non-procedural).

There are currently no sandards for 4GLs, primarily because new ideas in language
syntax, didogue and semantics are gppearing daily. Some 4GL s have dready disappeared, and
many of the best languages now come from relatively smdl, new vendors. As such, ther
gpplication to Mission Criticad Computer Resources (MCCR) systems, where obsolescence
and supportability are key issues, islimited. Dueto ther limited range of application and their
dow processing speeds, they will tend to be more prevadently utilized in Management
Information Systems (M1S) developments.

QUANTITATIVE IMPACTS

There have been severa studies conducted and published in the late 1980s which
compare various 4GLswith 3GLs[4]. Whileinteresting to read, the results are not definitive.
Provided below is a synopsis of some of these studies and their associated findings.

Study #1: Massey University - Correspondence School Information System [4]
Results:
4AGL lines of code were approximately 85% fewer than 3GL (13,900 SLOC versus
93,600 SLOC)
4AGL overdl effort experienced areduction of 77% in totad manmonths required (61.6
manmonths (4GL) versus 262.3 manmonths (3GL)), while in contrast overdl
productivity decreased 37% (18.82 loc/day (3GL) versus 11.87 loc/day (4GL))
Phase digtribution for 4GL was more front loaded than typica 3GL developments (24%
for feasbility and requirements on 4GL project vice 6% for 3GL project)

Bottom Line:
85% fewer lines of code, 77% fewer manmonths, however with an associated 37%
decrease in productivity (hrs/loc)

Study #2: Matos and Jalics Experimental Analysis[5]
Bottom Line:
29-39% increase in productivity

September 1996 3

Study #3: Capers Jones-Applied Softwar e M easurement Surveys|[6]
Results:
3GLs averaged from 4 function points (FP) per gaff month (sm) to 12 FP/smand 91
source statements per function point which resulted in 364- 1092 statements/staff
month
4GLs averaged from 8-18 FP/sm and 20 source statements per function point which
resulted in 160-360 statements/staff month

Bottom Line:
4AGL shows average increases in productivity per function point of 100-150%;
however, it appears less productive based on statements per staffmonth.

Study #4: Harel and McLean Study - UCLA Graduate School of MIS[7]
Results:
3GL to 4GL ddivered source ingructions (DSl) varied by afactor of 0.9:1to 27:1
3GL to 4GL marn-hours (MHRS) varied by afactor of 1.5:1t0 81
3GL to 4GL productivity (DSI/MH) varied by afactor of 0.5:1to 5:1

Bottom Line:
On average, 60% fewer lines of code (DSl), 60% fewer man-hours (MH),
however, with roughly equivaent productivity (DSI/MH)

The above comparisons highlight the mgor difficulty involved in comparing 3GLs with
4GLs, which isthat, because 4GL s tend to take less lines of code to provide the same
functiondity, they typicaly will require overdl less effort (man-hours), but achieve no grester
productivity (hrs/loc). To further exacerbate the problem, there is no established definition of a
line of code in afourth generation language, and thisis complicated by the nonproceduraity of
many 4GLs (i.e., the additional lines of code automatically generated that are associated with
carrying out an ingruction) [4]. In fact, often times to conduct these studies, the participants
were forced to invent a definition of a line of code (for example - if the form data went down a
screen in columns, each line in a column was counted as a separate Satement if the line
described a separate object). Additiondly, in order to generate the 3GL to 4GL comparison,
sandard expansion factors were often times utilized (i.e., one 4GL lineis equivaent to six 3GL
lines - based on standard function points metrics), Snce the comparable 3GL program is
hypothetical. A number of dternative metrics have been suggested to rectify the line of code
gpecification problem, such as[8]:

“ Software science’ or program information-content metrics

Program control-flow complexity metrics

Design complexity metrics

Program-externd metrics, such as number of inputs, outputs, files, inquiries and
interfaces, or function points (alinear combination of those five quantities)
Work-transaction metrics

September 1996 4

However, no forma metric for defining 4GL work content has been developed and universaly
accepted.

RECOMMENDATION

Anticipated savings from the utilization of 4GL s depend greetly on the languages being
utilized, the intended gpplication of the 4GL, the personnel being utilized, their experience with
the 4GL, and the metrics utilized to compare the productivities. Based on the varying amounts
of savings redlized in the studies cited above, and the uncertainty and inaccuracy surrounding
this type of comparison, NCCA recommends that the analyst does not try to convert a 3GL
productivity metric into a4GL productivity metric, but rether collect, normaize and utilize
historica 9zing, effort and productivities for comparable 4GL efforts. In the event that the
andy4 is unable to collect comparable historica 4GL data, then NCCA recommends utilizing
average 3GL productivities (i.e., assume no increase or decrease in productivity) from either the
associated contractor or from the NCCA effort tool (if contractor datais unavailable), while
verifying that the PM’ s software engineers have adequatdly szed the 3GL effort to reflect a
reduction in the tota anticipated number of ddivered source ingtructions (Snce 4GLs require
less satements per function). Thiswill ill result in an overdl savingsin anticipated man-hours.

Finaly, as higtorica data becomes available, the NCCA SW team will periodically
revist and update this recommendation.

September 1996 5

REFERENCES

1. Guiddinesfor Successful Acquisition and Management of Software Intensve Systems:
Wegpons Systems, Command and Control Systems, Management Information Systems,
Verson 1.1, STSC, February 1995, pp. 2-8 & 2-12.

2. Hook, Audrey A., et d., “A Survey of Computer Programming Languages Currently Used
in the Department of Defense - An Executive Summary,” Crosstalk, October 1995, pp. 4-5.

3. Martin, James and Leben, Joe, Fourth Generation Languages, Volume 111 Products, pp. 6-
20.

4. Verner, June and Tate, Graham, “Estimating Size and Effort in Fourth- Generation
Development,” |EEE Transactions on Software Engineering, July 1988, pp. 15-22.

5. Fenton, Norman and Pfleeger, Shari Lawrence, “ Science and Substance: A Challenge to
Software Engineers,” |EEE Transactions on Software Engineering, July 1994, p. 93.

6. Jones, Capers, Applied Software Measurement - Assuring Productivity and Qudlity,
McGraw Hill, Inc., New York, 1991, pp. 55 & 76.

7. Hard, E. and McLean, "The Effects of Using a Nonprocedura Language on Programmer
Productivity," UCLA Graduate School of Management, Information Systems Working Paper,
pp. 3-83, November 1982.

8. Demarco, Tom and Ligter, Timothy, Software State-Of-The-Art: Selected Papers, Dorset
House Publishing Co. Inc, New Y ork, New Y ork, 1990, p. 34-35.

September 1996 6

