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Introduction

• General error regression method (GERM) is becoming more and 
more popular
– Non-linear CERs using constrained optimization
– Wide variety of functional forms
– But, to date, lacks means of evaluating “significance” of individual 

regression fit parameters
• This research attempts to develop a collection of “significance”

metrics for use with GERM
– Independent of underlying error distribution
– Comparable across functional forms
– Require no distributional assumptions

• These “significance” metrics will be beneficial to CER developers
– Will enable cost modelers to judge “significance” of independent 

variables
– Will minimize need to collect unimportant data



Background
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Ordinary Least Squares (OLS)

• OLS regression dates back to 1795
– Carl Friedrich Gauss

• Used most frequently to establish an estimate of the 
linear relationship between variables Y and X when the 
actual, though unknown, relationship is assumed to be:

• Where
– βi are the actual coefficients and 
– ε is a random error term with µ = 0 and constant σ2

εββββ +++++= nn XXXY L22110
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The Estimated Equation

• The typical result of an OLS regression is an estimate 
of the relationship, having the form:

• Where
– bi are the estimated coefficients and are calculated by solving 

the following matrix equation for b:

nnxbxbxbby ++++= L22110ˆ

( ) YXXXb TT 1−
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OLS “Significance”

• Modern statistical applications often require tests of the 
“significance” of the coefficients, bi

• Assuming the error term of the actual relationship, ε, has 
a normal distribution, statistical theory shows that the 
Student’s t distribution (which is derived from the normal
distribution) should be used to test significance 
hypotheses regarding these coefficients

• In statistics, a result is deemed “statistically significant” if 
that result is not likely to have occurred by chance

• Therefore, in OLS we test whether or not each 
coefficient is really just zero, given that a non-zero 
estimate was produced
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The t-Statistic

• In OLS, each regression coefficient is scored using the t-statistic
• The t-statistic is the solution to the test statistic obtained by 

performing the following hypothesis test:

• The test statistic is:

• Where
– bi is the estimated value of the coefficient
– βi is the true value of the coefficient (assumed under the null 

hypothesis to be zero)
– SE is the standard error of the regression
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The t-Test

• The test statistic is then compared to a Student’s t
distribution with n degrees of freedom, where n is the 
number of data points minus the number of coefficients

• If the test statistic falls within a critical region, 
determined in advance, of the tails of the Student’s t
distribution, then the null hypothesis is rejected, and the 
coefficient bi is said to be “statistically significant”

• This means that the non-zero value of bi is unlikely to 
have been arrived at by chance and therefore βi
probably should not be considered as zero in the 
regression relationship
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Significant vs. Insignificant

• In practical terms, those coefficients that are “significant”
imply that the corresponding cost drivers have 
something important to say about the value of Y

• Those that are NOT “significant” are probably due 
merely to chance, and thus have little of importance to 
say about the value of Y

• The usual response, then, is to one-by-one remove an 
“insignificant” variable from the cost model, establish a 
new regression equation without that variable, then 
examine the remaining coefficients for significance

• The process is repeated until all remaining variables are 
deemed “significant”
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General Error Regression Method

• GERM as often practiced today dates back to work done during the
period 1994-1998 by S.A. Book, P.H. Young, and N.Y. Lao

• GERM refers to the regression method in which estimates of the fit 
parameters of generalized functional forms (e.g. non-linear) are 
derived through constrained optimization
– NOTE: GERM as discussed here is NOT the same as Iteratively Re-

weighted Least Squares (IRLS) 
• GERM enables derivation of a regression model regardless of 

functional form or nature of error distribution
– Seeks fit parameters that minimize SSE or SSPE

• Two common varieties of GERM models:
– Those with ADDITIVE errors
– Those with MULTIPLICATIVE errors
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No Analogous “Significance” Test for 
GERM Exists

• Until now there has been no “significance” test for fit parameters 
derived using GERM that is analogous to the t-statistic found in OLS
– GERM CERs typically non-linear
– Error distributions not usually assumed to be normal

• CER developers usually determine, in advance, which independent 
variables they want in their models
– Then judge goodness of fit of entire CER based on SE or SPE and 

Pearson’s r2 only
– If a CER can be developed with low SE or SPE and high Pearson’s r2

then the CER is considered a success
• But, it would be beneficial to be able to judge whether or not one or 

more of the “desired” independent variables (cost drivers) actually 
have something important to say about the value of the dependent
variable (cost)
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What is Needed

• Goal of this research is to “invent” a collection of metrics 
that
– Are analogous to the t-statistic
– Are comparable among CERs regardless of functional form
– Require no distributional assumptions
– Simple to understand
– Enable one to judge “significance” of regression fit parameters

• Consider a CER of the form
• If any of the fit parameters do not substantially impact 

the calculated value of the CER, or reduce the model’s 
variance, then they might as well be removed from the 
model – one less data point to collect, one more degree 
of freedom

Typeedc fQWbXaY +=
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“Insignificant” Fit Parameters

• Hypothesis: “Insignificant” fit parameters will have little impact on 
CER result or variance if nullified

• Consider the two estimates vs. actuals plots shown below
– The one on the left is based on a multivariable GERM CER
– The one on the right is based on a re-optimized GERM CER after one of 

the fit parameters is nullified

• Note that they are nearly identical!
– Indicates that the nullified fit parameter didn’t make much difference –

so, should be considered “insignificant”
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“Significant” Fit Parameters

• Hypothesis: “Significant” fit parameters will have substantial impact 
on CER result or variance if nullified

• Consider the two estimates vs. actuals plots shown below
– The one on the left is based on a multivariable GERM CER
– The one on the right is based on a re-optimized GERM CER after one of 

the fit parameters is nullified

• This time they are quite different!
– Indicates that the nullified fit parameter made a big difference – so, 

should be considered “significant”
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Impact on CER Mean and Variance

• If an “insignificant” fit parameter is nullified, the resulting error 
distribution’s mean and variance should remain about the same
– The error distributions on the left indicate nullification of an “insignificant” fit 

parameter
• If a “significant” fit parameter is nullified, the resulting error 

distribution’s mean and variance should change dramatically
– The error distributions on the right indicate nullification of a “significant” fit 

parameter
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Proposition: Fit Parameters Can Be Scored 
Based on Impact to CER Mean and Variance

• It is proposed that individual CER fit parameters can be 
scored by measuring changes in CER mean and 
variance when those fit parameters are nullified

• Scoring metric should produce a small number if the 
change in mean and/or variance is small (insignificant), 
and a large number if the change in mean and/or 
variance is large (significant)

• Assumption: The CER has a probability distribution
– We may not know what it looks like
– But it should have a mean and a variance
– GERM CERs easily meet this assumption
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A Note on “Nullification”

• How, exactly, does one “nullify” a fit parameter?
• There is an element of art to this, and it depends on the 

functional form
• We desire a method to make the fit parameter “go away”
• Consider the CER: 
• The method used to nullify each fit parameter depends on 

its position in the CER
• Fit parameter a is an additive constant

– To nullify, set it equal to zero
• Fit parameters b and f are multipliers

– To nullify, set them equal to 1.0
• Fit parameters c, d, and e are exponents

– To nullify, set them equal to zero

Typeedc fQWbXaY +=
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Significance Relative to the Mean, 
SIGMean

• The first significance metric is that relative to the CER mean
• Define the “pseudo-mean” of a CER, f(X), as

• SIGMean is defined as the percentage difference between the pseudo-
mean of the fullfull CER and the pseudo-mean of the reducedreduced CER

• The fullfull CER contains all of the CER’s fit parameters
• In the reducedreduced CER, one of the fit parameters is nullified
• Both CERs are evaluated at the means of the independent variables 

(cost driver values)
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SIGMean Example #1 Setup

• Consider the following fullfull CER:

• The pseudo-mean is:

• Suppose:

• Then the evaluated pseudo-mean is:

• Now suppose we nullify the exponent associated with 
X1, by setting it equal to zero
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SIGMean Example #1 Conclusion

• After re-optimizing, we are left with the following 
reducedreduced CER:

• i.e.:

• Re-entering the values for                      we have:

• The value calculated for SIGMean is:

• In this case, the difference is quite large, indicating that 
the fit parameter for X1 is ““significantsignificant””
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SIGMean Example #2

• Now consider the same fullfull CER:

• But this time we nullify the exponent associated with X3 by 
setting it equal to zero

• After re-optimizing, we are left with:

• The pseudo-mean is evaluated as:

• Then the value calculated for SIGMean is:

• This time, the mean of the reducedreduced CER is only about 4% 
less than that of the fullfull CER – indicating that this fit 
parameter is relatively ““insignificantinsignificant””
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Significance Relative to the 
Standard Error, SIGSE

• For CERs with additive errors, the second significance 
metric is that relative to the standard error (SE) of the 
CER, denoted SIGSE

• The SE of the CER distribution is computed as follows:

• SIGSE is defined as the percentage difference between 
the SE of the fullfull CER and SE of the reducedreduced CER
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SIGSE Example #1 Setup

• Consider the following fullfull CER (with additive errors):

• The SE of the fullfull CER is calculated as:

• Now suppose we nullify the exponent associated X1, by 
setting it equal to zero

• After re-optimizing, we are left with the following 
reducedreduced CER:

• i.e.:
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SIGSE Example #1 Conclusion

• The SE of the reducedreduced CER is calculated, after re-
optimization, as:

• Then the value of SIGSE is calculated as:

• In this case, the difference between the SE of the fullfull
and reducedreduced CERs is quite large
– Indicating that the fit parameter for the exponent associated with 

X1 is ““significantsignificant””

[ ] 06.95$)(
1

1

2
ReducedReduced =−

−
= ∑

=

n

i
ii xfy

mn
SE

%8.132328.1
84.40$

84.40$06.95$
==

−
=SESIG



Reprinted with permission of MCR, LLC
25

SIGSE Example #2
• Now consider the same fullfull CER, but this time nullify the 

exponent associated with X3 by setting it equal to zero
• After re-optimizing, we are left with the following reducedreduced

CER:

• The SE of the reducedreduced CER is calculated as:

• And the value of SIGSE is calculated as:

• In this case SIGSE is much smaller, indicating that the fit 
parameter is relatively ““insignificantinsignificant””
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Significance Relative to the Standard 
Percent Error, SIGSPE

• For CERs with multiplicative errors, the third significance 
metric is that relative to the standard percent error (SPE) 
of the CER, denoted SIGSPE

• The SPE of the CER distribution is computed as follows:

• SIGSPE is defined as the percentage difference between 
the SPE of the fullfull CER and SPE of the reducedreduced CER
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SIGSPE Example #1 Setup

• Consider the following fullfull CER (multiplicative errors):

• The SPE of the fullfull CER is calculated as:

• Now suppose we nullify the exponent associated X1, by 
setting it equal to zero

• After re-optimizing, we are left with the following 
reducedreduced CER:

• i.e.:
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SIGSPE Example #1 Conclusion

• The SPE of the reducedreduced CER is calculated, after re-
optimization, as:

• Then the value of SIGSPE is calculated as:

• In this case, the difference between the SPE of the fullfull
and reducedreduced CERs is quite large
– Indicating that the fit parameter for the exponent associated with 

X1 is ““significantsignificant””
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SIGSPE Example #2
• Now consider the same fullfull CER, but this time nullify the 

exponent associated with X3 by setting it equal to zero
• After re-optimizing, we are left with the following reducedreduced

CER:

• The SPE of the reducedreduced CER is calculated as:

• And the value of SIGSPE is calculated as:

• In this case SIGSPE is much smaller, indicating that the fit 
parameter is relatively ““insignificantinsignificant””
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The Total Significance, SIGTotal

• The last significance metric proposed here is that for the total
significance, which is comprised of a combination of 
SIGMean and SIGSE (or SIGSPE)

• The simplest approach is to add the absolute values of 
SIGMean and SIGSE (or SIGSPE), a process that combines the 
percentage shift in the CER mean with the percentage 
change in the CER variance

• (for additive errors)
• (for multiplicative errors)

• Note there should be no need to take the absolute value of 
SIGSE or SIGSPE because they should always be non-
negative

MeanSETotal SIGSIGSIG +=

MeanSPETotal SIGSIGSIG +=
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SIGTotal Example

• Suppose we calculate SIGMean and SIGSE on a certain fit 
parameter and it turns out that
– SIGMean = -0.035 (-3.5%)
– SIGSE = 0.045 (4.5%)

• Then SIGTotal is calculated as follows:
– SIGTotal = SIGSE + |SIGMean| = 0.045 + | -0.035 | = 0.080
– So the combined significance is 8%
– This could be considered relatively ““insignificantinsignificant””
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Significant or Insignificant?

• An obvious question is “at what value of SIG is a fit 
parameter declared significantsignificant or insignificantinsignificant?”
– This is still an open question
– Subject to interpretation
– More research needed

• For now, the author suggests as default values:
– SIGSE, SIGSPE, SIGMean < 5% indicate insignificantinsignificant
– SIGTotal < 10% indicates insignificantinsignificant

• Significance metrics cover a continuum of values
– Those close to zero are insignificantinsignificant
– Those that deviate substantially from zero are significantsignificant

Insignificant SignificantSignificant

<< 0 < 0 0 > 0 >> 0
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Conclusions

• This research has demonstrated at least one way of 
evaluating “significance” of individual fit parameters that 
are established using GERM

• Metrics are comparable across CERs regardless of 
functional form
– They are developed heuristically
– They require no distributional assumptions – only that the CER 

error distribution exists and has a finite mean and variance
– Provide a simple collection of metrics by which to judge the 

“significance” of individual fit parameters
– They are beneficial to anyone who uses GERM to develop CERs
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Recommended Further Study

• This research comprises a “first look” by MCR
• In furtherance of this research, MCR is also looking into:

– The possible discovery of a “universal” value that determines 
whether a fit parameter is either significant or insignificant

– Development of methods to simplify the calculation of each fit 
parameter’s SIG values, e.g., is there an analytical way to do 
this?

– Discovery of more relevant or descriptive metrics
– Variations on the current theme to include

• Impact on variance due to changes in degrees of 
freedom

• Use on CERs developed with IRLS
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General Error Regression Method

• GERM as often practiced today dates back to work done during the
period 1994-1998 by S.A. Book, P.H. Young, and N.Y. Lao

• GERM refers to the regression method in which estimates of the fit 
parameters of generalized functional forms (e.g. non-linear) are 
derived through constrained optimization
– NOTE: GERM as discussed here is NOT the same as Iteratively Re-

weighted Least Squares (IRLS) 
• GERM enables derivation of a regression model regardless of 

functional form or nature of error distribution
– Seeks fit parameters that minimize SSE or SSPE

• Two common varieties of GERM models:
– Those with ADDITIVE errors
– Those with MULTIPLICATIVE errors
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Additive Errors
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GERM With Additive Errors

• For each yi, the actual value equals the estimated value plus a 
random error, ε, with µ = 0 and constant σ2

• The error is the difference between the actual value, yi,  and the 
estimated value, f(xi)

• The problem is to choose the fit parameters of f(X) so that the sum 
of squared errors is as small as possible

• Solutions can be found using optimization techniques
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Additive GERM Statistics

• Average Bias: The average of all errors made in estimating the 
points in the database
– This is constrained to be equal to zero in the optimization process

• Standard Error (SE): Same interpretation as the SE in OLS – the 
root mean square of all errors made in estimating the points in the 
database

• Pearson’s r2: The squared correlation between the estimated values, 
f(xi), and the actual values, yi
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Multiplicative Errors
 

Multiplicative Errors
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GERM With Multiplicative Errors

• For each yi, the actual value equals the estimated value multiplied 
by a random error, ε, with µ = 1 and constant σ2

• The error is the ratio of the actual value, yi,  to the estimated value, 
f(xi)

• The problem is to choose the fit parameters of f(X) so that the 
summation shown below is as small as possible

• Solutions can be found using optimization techniques
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Multiplicative GERM Statistics

• Average Percent Bias: The average of all percent errors made 
in estimating the points in the database
– This is constrained to be equal to zero in the optimization process

• Standard Percent Error (SPE): The root mean square of all 
percent errors made in estimating the points in the database

• Pearson’s r2: The squared correlation between the estimated 
values, f(xi), and the actual values, yi
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