
1 | P a g e

Software and IT‐CAST
Proceedings

22‐24 August 2017

Lockheed Martin Global Vision Center

2121 Crystal Drive

Arlington, VA 22202

2 | P a g e

TABLE OF CONTENTS

Description Page

Title 1

Table of Contents 2

Overview 3

Agenda 4

Keynote Biography 6

Abstracts 7

Keynote Address 14

Presentations

1) Agile and GAO Cost Estimating Best Practices, Karen Richey (GAO) 22

2) How Should We Estimate Agile Projects and Measure Progress to Plan, Thomas
Coonce (IDA) & Glen Alleman (Niwot Ridge)

45

3) Software Size Growth, Marc Russo (NCCA) 94

4) Adapting a classic Independent Cost Estimation [Process] for Agile and DevOPS ,
David Seaver (NSA)

128

5) Assessing ERP Cost, Schedule and Size Growth, Haset Gebre‐Mariam NCCA) &
Rob Williams (Herren Associates)

151

6) Objective SLOC: An Alternative Method to Sizing Software Development Efforts,
Andrew Kicinski (Integrity Applications Incorporated ‐ NRO)

194

7) Software Cost Estimation Meets Software Diversity, Barry Boehm (USC) 223

8) Army Software Maintenance Cost Estimating Relationships , Cheryl Jones (U.S.
Army ARDEC) James Doswell (ODASA‐CE)

262

9) Apples and Oranges: a Presentation and Analysis of Results of Cloud Cost
Calculators and Rate Cards, Daniel J Harper (MITRE)

299

10) Rosetta Stone for Software Sizing, Victor Fuster (QSM) & Taylor Putnam‐Majarian
(QSM)

321

11) SRDR Unified Review Function (SURF): Deeper Focus on Software Data Quality,
Nick Lanham and Marc Russo (NCCA)

350

12) Expanding the Horizons of Software Cost Estimation, Jairus M Hihn (NASA JPL) 372

13) Why Does Software Cost So Much? Towards a Causal Model, Bob Stoddard and
Mike Konrad (Software Engineering Institute)

392

14) Reliable Non‐Design, Code, Test, and Integration Cost Relationships, Brittany
Staley and Jeremy Goucher (Herren Associates)

408

15) Introduction to Software Obsolescence Cost Analysis Framework, Sanathanan
Rajagopal (QinetiQ, United Kingdom)

429

16) Cost Assessment Data Enterprise (CADE) – Overview & Software Initiatives,
Daron D Fullwood (OSD CAPE) Ranae Woods, SES (AFCAA)

470

17) COCOMO III Workshop: Implementing a New Driver for Software Security, Barry
Boehm and Brad Clark (USC)

493

3 | P a g e

OVERVIEW

The Naval Center for Cost Analysis (NCCA) and the National Geospatial‐Intelligence Agency
Corporate Assessment and Program Evaluation (NGA CAPE) present the Software and Information
Technology Cost Analysis Solutions Team (Software and IT‐CAST) meeting from August 22‐24,
2017 at the Lockheed Martin Global Vision Center in Crystal City, Virginia. This meeting is
organized with the support of US Army ARDEC, Lockheed Martin, and DOD cost agencies.

The Software and IT‐CAST meeting is a venue to build coalitions with government and industry,
to exchange cost data, share lessons learned, and establish best practices concerning software
and information technology cost estimation. Topics include

 Software and Information Technology Cost Estimation

 Software Cost Data Collection and Analysis Best Practices

 Project Cost and Schedule Growth

 Measurements for Agile Software Development

 Measurements for Software Maintenance

 Measurements for Cloud Computing and Cyber Security

The program includes presentations, workshops, and contractor one‐on‐one discussions.
Presentations and workshops are open to all attendees. Contractor one‐on‐one discussions are
restricted to federal employees who have registered.

COMMITTEE

General Chair:
Vjosa Dreshaj (NGA CAPE)
Wilson Rosa (NCCA)
Haset Gebre‐Mariam (NCCA)

Program Co‐Chairs:
Corinne Wallshein (NCCA)
Corey Boone (NCCA)
Lyle Patashnick (NGA CAPE)

Venue Co‐Chair:
Gregory Niemann (Lockheed Martin)

Portal Design Co‐Chair:
Don Clarke (NCCA)

ATTENDANCE

General sessions (presentations and workshops) are open to all attendees.

Contractor discussions are restricted to federal government employees who have registered.

4 | P a g e

Software and IT‐CAST Agenda
22‐24 August 2017

Lockheed Martin Global Vision Center
2121 Crystal Drive, Crystal City, Arlington, VA 22202

Tuesday, August 22, 2017 – General Session (Open to All)

0730 – 0800 Registration

0800 – 0810 Opening Remarks Jennifer Rose (NGA CAPE) Auditorium

0810 – 0840 Keynote Address John Zangardi (Acting DoD CIO) Auditorium

0845 – 0915 Agile and GAO Cost Estimating Best

Practices

 Karen Richey (GAO) Auditorium

0920 – 0950 How Should We Estimate Agile

Projects and Measure Progress to

Plan

 Thomas Coonce (IDA)

 Glen Alleman (Niwot Ridge)

Auditorium

0950 – 1005 Break

1005 – 1035

1040 – 1110

 Software Size Growth

Adapting a classic Independent Cost

Estimation [Process] for Agile and

DevOPS

 Marc Russo (NCCA)

 David Seaver (NSA)

Auditorium

Auditorium

1115 – 1145 Assessing ERP Cost, Schedule and

Size Growth

 Haset Gebre‐Mariam (NCCA)

 Rob Williams (Herren Associates)

Auditorium

1145 – 1300 Lunch

1300 – 1330 Objective SLOC: An Alternative

Method to Sizing Software

Development Efforts

Andrew Kicinski (Integrity
Applications Incorporated ‐ NRO)

Auditorium

1335 – 1405 Software Cost Estimation Meets

Software Diversity

Barry Boehm (USC) Auditorium

1405 – 1415 Break

1415 – 1700 COCOMO III Workshop:

Implementing a New Driver for

Software Security

Barry Boehm and Brad Clark (USC) 2nd Floor, GVC‐A

Tuesday, August 22, 2017 – Contractor Discussions (Restricted)

1415 – 1600 Northrop Grumman One‐on‐One John Sautter (Northrop Grumman) Auditorium

5 | P a g e

Wednesday, August 23, 2017 – General Session (Open to All)

0730 – 0800 Registration

0800 – 0810 Opening Remarks David Cashin (NCCA) Auditorium

0810 – 0840 Army Software Maintenance Cost

Estimating Relationships

Cheryl Jones (U.S. Army ARDEC)

James Doswell (ODASA‐CE)

Auditorium

0845 – 0915 Apples and Oranges: a Presentation and

Analysis of Results of Cloud Cost

Calculators and Rate Cards

Daniel J Harper (MITRE) Auditorium

0920 – 0950 Rosetta Stone for Software Sizing Victor Fuster (QSM)

Taylor Putnam‐Majarian (QSM)

Auditorium

0950 –1000 Break

1000 – 1030 SRDR Unified Review Function (SURF):

Deeper Focus on Software Data Quality

Nick Lanham (NCCA)

Marc Russo (NCCA)

Auditorium

1035 – 1105 Expanding the Horizons of Software

Cost Estimation

 Jairus M Hihn (NASA JPL) Auditorium

1110 – 1140 Why Does Software Cost So Much?

Towards a Causal Model

Bob Stoddard and Mike Konrad
(Software Engineering Institute)

Auditorium

1140 – 1245 Lunch

1245 – 1315 Reliable Non‐Design, Code, Test, and

Integration Cost Relationships

Brittany Staley and Jeremy
Goucher (Herren Associates)

Auditorium

1320 – 1350 Introduction to Software Obsolescence

Cost Analysis Framework

Sanathanan Rajagopal (QinetiQ,
United Kingdom)

Auditorium

1355 – 1425 Cost Assessment Data Enterprise (CADE)

– Overview & Software Initiatives

Daron D Fullwood (OSD CAPE)
Ranae Woods, SES (AFCAA)

Auditorium

1425 – 1435 Break

1435 – 1700 COSYSMO 3 Workshop Jim Alstad (USC) 2nd Floor, GVC‐A

Wednesday, August 23, 2017 – Contractor Discussions (Restricted)

1435 – 1600 NGA PMO Analytic Services One‐on‐

One

Brian Cali (IAI) and Patrisha Knight

(NGA)

Auditorium

Thursday, August 24, 2017 – General Session (Open to All)

0800 – 0830 Registration

0830 – 1230 CADE Training Session Torri Preston and Marc
Stephenson (OSD CAPE)

Auditorium

Thursday, August 24, 2017 – Contractor Discussions (Restricted)

0830 – 1000

1010 – 1140

VMWare One‐on‐One

Amazon One‐on‐One

Carol Traynor and Don B (VMware)

Seabreeze Osburn (Amazon)

2nd Floor, GVC‐A

2nd Floor, GVC‐A

6 | P a g e

Tuesday, August 22, 2017

Keynote

Dr. John Zangardi

Department of Defense Chief Information Officer (Acting)

Dr. John Zangardi became the Principal Deputy Department of

Defense Chief Information Officer on October 2, 2016, and is

currently serving as the Acting DoD CIO. As the Acting DoD CIO, Dr.

Zangardi assists as the primary advisor to the Secretary of Defense

for Information Management / Information Technology and

Information Assurance as well as non‐intelligence space systems;

critical satellite communications, navigation, and timing programs;

spectrum; and telecommunications.

 Dr. Zangardi's background includes acquisition, policy, legislative

affairs, resourcing, and operations. In his most recent assignment

as the Deputy Assistant Secretary of the Navy for Command,

Control, Communications, Computers, Intelligence, Information

Operations, and Space (DASN C4I, IO, and Space), he was

responsible for providing acquisition oversight for C4I, cyber, space, business enterprise, and

information technology programs. In 2014 and 2015, he additionally served as the acting Department of

the Navy Chief Information Office (DON CIO).

 Dr. Zangardi is a retired Naval Flight Officer and served in a variety of command and staff assignments.

After retiring from the Navy, Dr. Zangardi was selected for appointment to the Senior Executive Service

(SES) and assigned as the Deputy Director Warfare Integration Programs (N6FB) within the Deputy Chief

of Naval Operations Communications Networks (N6) Directorate. With the stand‐up of the Deputy Chief

of Naval Operations Information Dominance (N2/N6), he was assigned as the Director for Program

Integration and as Deputy to the Director for Concepts, Strategy, and Integration.

 He is a native of Scranton, Pennsylvania and a graduate of the University of Scranton. Dr. Zangardi was

awarded a Master of Science degree from the Naval Postgraduate School and a Doctor of Philosophy

degree from George Mason University.

7 | P a g e

Tuesday, August 22, 2017

0845 ‐ 0915: Agile and GAO Cost Estimating Best Practices

Karen Richey, Government Accountability Office

Abstract

This paper will examine how GAO’s cost estimating process can be applied to programs that are using an

Agile framework. First, it will provide a brief overview of Agile processes and methods. Second, it will

examine each of the 12 steps in the GAO cost estimating process and how those steps relate to an Agile

framework. Finally, it will discuss how Agile artifacts can be leveraged to fulfill cost estimating

documentation needs.

0920 ‐ 0950: How Should We Estimate Agile Projects and Measure Progress to

Plan?

Thomas J. Coonce, Institute for Defense Analyses

Glen B. Alleman, Niwot Ridge, LLC

Abstract

1005 ‐ 1035: Software Size Growth

Marc Russo and Corinne Wallshein, Naval Center for Cost Analysis

Abstract
Software cost estimating relationships often rely on software size growth percentages. Actual delivered

source lines of code (SLOC) may be predicted with categories of early code estimates such as new,

modified, reuse, and auto‐generated SLOC. Uncertainty distributions will be presented to represent

growth by code category for use in cost modeling.

8 | P a g e

Tuesday, August 22, 2017

1040 ‐ 1110: Adapting a classic Independent Cost Estimation [Process] for Agile

and DevOPS

David Seaver, National Security Agency

Abstract
The Business Intelligence and Analysis organization (B4) develops independent cost estimates for the
National Security Agency (NSA). For software intensive systems B4 creates independent software size
estimate with functional size estimation techniques. The functional size is converted to source lines of
code (where relevant) using B4 historical data from prior completed programs. B4 uses a streamlined
functional size technique called Simple Function Points (SFP) to develop the functional size estimate. To
count and analyze the SLOC B4 uses USC UCC with some custom tools wrapped around UCC.

The first part of this presentation will provide a brief overview of this process, items to be discussed
include: Agile and DevOPS defined; What’s different from classic waterfall projects; What business
processes (for estimation) need to be changed; What data collection processes (for estimation) have to
be changed.

The second part of the presentation will discuss how this process modification has been applied or will
be applied to estimate and measure: Business Systems; Analytic Development; Infrastructure Programs.

1115 ‐ 1145: Assessing ERP Cost, Schedule and Size Growth

Haset Gebre‐Mariam, Naval Center for Cost Analysis

Rob Williams, Herren Associates

Abstract
This study will examine percentage changes in cost, schedule, and size across Milestones A, B, C, and full
deployment for DoD Enterprise Resource Planning (ERP) programs. The analysis is based on nine fielded
systems collected from DoD authoritative data sources. Cost contributors, drivers, and factors by major
cost elements will also be examined. Results may be used for crosschecking cost estimates or business
case analyses at an early phase to inform funding decisions.

9 | P a g e

Tuesday, August 22, 2017

1300 ‐ 1330: Objective SLOC: An Alternative Method to Sizing Software

Development Efforts

Andrew Kicinski, Integrity Applications Incorporated

Abstract
Equivalent Source Lines of Code (ESLOC) is the basis of methodology used by many organizations for

collecting and estimating software development costs. Selecting ESLOC parameters requires insight into

the software reuse. Too often data collectors are unable to verify the appropriateness of the assigned

ESLOC parameters and validate their implementation. This paper examines the drawbacks of ESLOC, and

presents an alternative and more objective method to estimating software development effort

1335 ‐ 1405: Software Cost Estimation Meets Software Diversity

 Barry Boehm, University of Southern California

Abstract
The previous goal of having a one‐size‐fits‐all software cost (and schedule) estimation model is no longer
achievable. Sources of wide variation in the nature of software development and evolution processes,
products, properties, and personnel (PPPPs) require a variety of estimation models and methods best
fitting their situations. This talk will provide a short history of pattern‐breaking changes in software
estimation methods; a summary of the sources of variation in software PPPPs and their estimation
implications; a summary of the types of estimation methods being widely used or emerging; a summary
of the best estimation‐types for the various PPPP‐types; and a process for guiding an organization's
choices of estimation methods as their PPPP‐types evolve.

1415 ‐ 1700: COCOMO III Workshop: Implementing a New Driver for Software

Security

Brad Clark and Barry Boehm, University of Southern California

Abstract
COCOMO (COnstructive COst MOdel) is an open‐source model that allows analysts to estimate the cost,

effort, and schedule when planning a new software development activity. This workshop will begin with

a brief overview of the COCOMO III project and the proposed cost estimation model. The focus will then

shift to an overview of how to make software applications secure and the associated cost impact.

The main purpose of the workshop and the majority of time will be spent discussing ideas for

incorporating software security cost estimation in the COCOMO III model. Participants should come to

the workshop prepared to learn about and discuss how to make software secure.

10 | P a g e

Wednesday, August 23, 2017

0810 ‐ 0840: Army Software Maintenance Cost Estimating Relationships in a
Diverse Execution Environment

Cheryl Jones and John McGarry, U.S. Army ARDEC

James Doswell and Jenna Meyers, U.S. Army DASA‐CE

Abstract
For the past four years, the Army, under the leadership of DASA‐CE, has been collecting and analyzing
Army system software maintenance cost and technical execution data to support the development of
more accurate cost estimation methods. The presentation will present the cost methods and cost
estimation relationships developed from the analysis of the initial execution data sets. It will address
how the collected software maintenance data was evaluated, characterized and normalized; show cost
distributions across the primary functional domains; and present a set of derived software maintenance
CERs and benchmarks.

0845 ‐0915: Apples and Oranges: a Presentation and Analysis of Results of Cloud
Cost Calculators and Rate Cards

Daniel J Harper, MITRE Corporation

Abstract
A recent effort for an Army customer examined over a dozen calculators and rate cards for estimating
storage and hosting costs for cloud applications. This presentation will provide an overview of several
calculators and tools, guidance for cost estimators on interpreting IT‐centric inputs, and a discussion of
similarities and variation in results. We will also present a cloud complexity plotter which provides a
visual tool for explaining cloud cost and complexity drivers.

0920 ‐ 0950: Rosetta Stone for Software Sizing

Victor Fuster and Taylor Putnam‐Majarian, QSM Inc.

Abstract
Wouldn’t it be nice if some sort of software sizing “translator” existed, such as the Rosetta Stone for
languages? The original Rosetta Stone listed the same text in three languages (Ancient Greek, Demotic
script, and Ancient Egyptian hieroglyphics), serving as a "decoder" that helped give meaningful
interpretation to the previously mysterious hieroglyphics. The Rosetta Stone for Software Sizing works
to accomplish the same result for software sizing by translating units of need into units of work using
gearing factors. This allows one to size the same project using multiple methods (requirements, function
points, RICE counts, SLOC, etc.). We present our methodology and show how this technique can provide
valuable insights and analysis for oversight, management, and development estimation. Additionally,
we discuss at least two examples of the methodology’s recent implementation to Enterprise Resource
Planning (ERP) project estimation in the DoD and commercial environments.

11 | P a g e

Wednesday, August 23, 2017

1000 ‐ 1030: SRDR Unified Review Function (SURF): A Deeper Focus on Software

Data Quality

Nicholas Lanham and Marc Russo, Naval Center for Cost Analysis

Abstract
From December 2015 to December 2016, the SURF team completed the development of a standardized
V&V question template that was used to develop over 1,282 additional data quality comments.
Throughout the review process and as SURF members' generated V&V comments, each one was
"tagged" to a specific section of the SRDR V&V guide to identify specific SRDR variables that generate
the most data‐quality concerns. This presentation summarizes the V&V comment trends generated by
the SURF team's 1,282 V&V comments. In addition, this paper helps to raise attention to specific SRDR
variables and illustrates tangible data quality improvements to highly critical DoD software data. It also
provides detailed metrics to demonstrate how SURF is working and the significant‐positive impact the
V&V guide + SURF team + new SRDR review process is making on the Government's data‐quality.

1035 ‐ 1105: Expanding the Horizons of Software Cost Estimation

Jairus M Hihn, NASA Jet Propulsion Laboratory

Abstract
This presentation summarizes the results of ten years of research in using data mining and machine
learning methods to develop analogy estimation models. These results are based on the analysis of
NASA robotic spacecraft flight software data obtained from the NASA CADRe and other data sources
that have been collected for over thirty years. The results of the research indicate that cluster based
algorithms are an in important supplement to parametric models especially early in the lifecycle when
information is limited and uncertain.

1110 ‐ 1140: Why Does Software Cost So Much? Towards a Causal Model

Bob Stoddard and Mike Konrad, Software Engineering Institute

Abstract

How can we control the cost of software intensive systems? Software costs continue to escalate as

software continues to become an increasing portion of DoD systems. To contain costs we need to better

understand the factors that drive costs and which factors we can control. Although we know

relationships, we do not yet separate the causal influences from non‐causal spurious correlations. By

applying a new set of recently developed causal discovery and modeling tools to the research data,

causality can be identified, measured, and tested. Existing literature on software cost contains primarily

case studies and correlational studies from project data that continue to suffer from limited, public data

and overreliance on correlational techniques. Correlation does not logically imply causation, hence

correlational results are not necessarily useful for driving reductions in cost. In this talk, we will share

early research results that will differentiate true causal factors from those spuriously correlated with

cost.

12 | P a g e

Wednesday, August 23, 2017

1245 ‐ 1315: Reliable Non‐Design, Code, Test and Integration Cost Relationships

Brittany Staley and Jeremy Goucher, Herren Associates

Abstract

Software cost estimates require ratios derived from historic cost reports for non‐design, code, test, and

integration (NDCTI) cost elements. Since NDCTI accounts for as much as 50% of the estimate, a

comprehensive historical data set is critical to ensuring an accurate estimate. The authors have recently

analyzed over ten years of actual cost data from DoD command and control systems to develop a new

set of NDCTI ratios. The results also bring new insight into “fixed” versus “variable” cost.

1320 ‐ 1350: Introduction to Software Obsolescence Cost Analysis Framework

Sanathanan Rajagopal, QinetiQ, United Kingdom

Abstract
Software plays an important role in defence. Almost every project in defence has software elements
with various degrees of complexity and dependencies. This has brought its own challenges to the
availability‐based contracts. The challenges to both the contractors and the suppliers is that they have
to have a good understanding of the whole life cost of the product and have confidence in the whole life
cost model at the time of negotiation and contract signing. In order to understand and see the bigger
picture developers and the customers need to foresee the following issues that drive the whole life cost
and should be in a position to develop innovative means to mitigate these issues by

 Anticipation of the Software Obsolescence at a very early stage of projects.

 Understanding the technology insertion, technology update requirement.

 Understanding the relationship between Software Maintenance and Software Obsolescence.

 Anticipation of future capability integration to the existing platforms

 Formulation and evaluation of alternative architectural framework to inform the software
designers that recognizes the key market and cost drivers.

Software Obsolescence Cost Analysis Framework will help in managing software obsolescence

proactively and help to estimate the cost of Software Obsolescence Resolution. This framework is at

very early stages of its development and intended to release it once the validation is complete.

1355 ‐ 1425: Cost Assessment Data Enterprise Overview and Software Initiatives

Daron D Fullwood, Cost Assessment and Program Evaluation

Ranae Woods, SES, Air Force Cost Analysis Agency

Abstract
Learn about the future of cost data collection from the CAPE perspective. Will provide an update on
CADE and ensure the community is aware of ongoing efforts. This session will focus on CADE's data
initiatives along with an update on the Software Resource Data Reports.

13 | P a g e

Wednesday, August 23, 2017

1430 ‐ 1700: COSYSMO 3.0 Workshop: Updating Cost Estimation of Systems

Engineering to Support Affordability

Barry Boehm and Jim Alstad, University of Southern California

Abstract
The purpose of the COSYSMO (Constructive Systems Engineering Cost Model) model is to estimate the

Systems Engineering effort for large‐scale systems (both software and hardware). COSYSMO supports

the ANSI/EIA 632 standard as a guide for identifying the Systems Engineering tasks and ISO/IEC 15288

standard for identifying system life cycle phases.

This presentation will cover a mature draft of the COSYSMO 3.0 model, explaining both the new features

and the unchanged features. The presentation is recommended for those with experience in systems

engineering, especially as project leads or cost estimators.

Thursday, August 24, 2017

0830 ‐ 1230: Cost Assessment Data Enterprise (CADE) Training

Torri Preston and Marc Stephenson, OSD Cost Assessment and Program
Evaluation (CAPE)

Abstract
The OSD CAPE mission is to provide high quality, independent program analyses and insights as
requested by the Under Secretary of Defense for Acquisition, Technology and Logistics (USD(AT&L)) and
Congress, in addition to the review of programs that may be, or already are, struggling in the acquisition
process. CAPE initiated development of CADE, the Department's initiative to identify and integrate data
from disparate databases and systems for better decision‐making, management of, and oversight of the
Department's acquisition portfolio. The CADE primary function is to house authoritative data sources
that are seamlessly integrated, and easily searchable and retrievable to support analytics.

The CADE training session offers better insight into contract cost reporting and how to follow specific
regulations outlined by the DCARC. Major Defense Acquisition Program (MDAP) and Major Automated
Information Systems (MAIS) program personnel, government and industry, who are interested and
involved in Cost and Software Date Reporting (CSDR) contracting and reporting, are encouraged to
attend the event.

D o D C I O

S U P P O R T T H E W A R F I G H T E R

UNCLASSIFIED

Software and Information Technology

Cost Analysis Solution Team

Acting Department of Defense

Chief Information Officer

August 22, 2017

Dr. John Zangardi

D o D C I O

S U P P O R T T H E W A R F I G H T E R

UNCLASSIFIED

2

IT requires fast movers.

D o D C I O

S U P P O R T T H E W A R F I G H T E R

UNCLASSIFIED

Enterprise Information Technology
Achieving Effectiveness in Change Management

3

Change Effectiveness Equation

Q x A = E

Equation derived from GE’s Change

Acceleration Process (CAP) ™

The People Side of the Equation is just as important as the

Technical Side of the Equation

D o D C I O

S U P P O R T T H E W A R F I G H T E R

UNCLASSIFIED

Enterprise Information Technology
Achieving Effectiveness in Change Management

4

Change Effectiveness Equation

Q x A = E

If Acceptance (A) = 0, then Effectiveness (E) always = 0,

regardless of the strength of your Technical Strategy (Q)

D o D C I O

S U P P O R T T H E W A R F I G H T E R

UNCLASSIFIED

Change Process for Enterprise IT
Blocking and Tackling Fundamentals for Success

5

“As Is” State
Transition

State
“To Be”
State

Fundamentals for Success in Enterprise IT:

• Shared need, shared vision, shared commitment

• Upfront business process and change management

• Communication and collaboration among stakeholders

• Leadership engagement and initial buy-in

Getting the fundamentals wrong drives up costs

D o D C I O

S U P P O R T T H E W A R F I G H T E R

UNCLASSIFIED

Defense Travel System Modernization
Driving Change with Many Stakeholders

6

“As Is” State
Transition

State
“To Be”
State

Problem Statement: DoD travelers are dissatisfied with the current

complex, costly, and cumbersome travel solution

Stakeholders: DoD CIO, USD(AT&L), DCMO, USD(P&R), CAPE, OSD(C)

“Understand current system
and regulations

Reduce
regulations;
implement

commercial-based
pilot

“Commercial
travel solution

D o D C I O

S U P P O R T T H E W A R F I G H T E R

UNCLASSIFIED

DoD Enterprise IT Initiatives
Maximizing Effectiveness and Efficiency

7

• Cloud Security ● Innovating delivery and security approaches to move

more data into the commercial cloud

• Defense Enterprise Office Solutions ● Connecting the workforce through

commercial, enterprise office solutions for collaboration and productivity

• Windows 10 Transition ● Reducing and protecting the Department’s

attack surface through a common DoD-wide operating system

• Joint Regional Security Stacks (JRSS) Rollout ● Making progress on

the path to migrating DoD Components to JRSS

• Data Center Optimization ● Driving efficiency by optimizing DoD data

storage solutions and moving to a data center scorecard

Speed to Capability ● Balancing Security and Cost ● Instilling a Culture of Risk Awareness

PRELIMINARY

Slide 1

THIS PRELIMINARY WORK OF GAO IS SUBJECT TO REVISION AND SHOULD NOT BE

REPRODUCED OR DISTRIBUTED. SOME GRAPHICS MAY BE ENTITLED TO COPYRIGHT.

Agile Development and GAO

Cost Estimating Best Practices

Karen Richey

August 22, 2017

PRELIMINARY

Slide 2

Outline

• Introduction

• Agile Background

• GAO Cost Estimating 12-Step Process

• Mapping Cost Estimating Best Practices to Agile Methods

• Conclusion

• Next Steps

PRELIMINARY

Slide 3

Introduction Problem

• Federal agencies depend on Information Technology (IT) to support their
missions.

• The government spends more than $80 billion annually on information technology
systems

• Congress has expressed interest in monitoring and improving IT investments
through hearings and other reviews over the past two decades.

• In 2010, the Office of Management and Budget (OMB) expressed concern
about federal IT projects that have taken years but have failed to produce
results.

• Common pitfalls are that Agile is often used as an excuse not to
• Document,
• Plan for the software development process, and
• Provide traditional program management tools (e.g. cost estimates, schedule

estimates, etc.)

While federal IT investments can improve operational performance

and increase public interaction with government, too often they have

become risky, costly, and unproductive mistakes

Government Accountability Office, 2012

PRELIMINARY

Slide 4

Introduction – Solution?

• One solution to reduce risks associated with broadly scoped, multiyear

projects is to use shorter software delivery times

• Incremental Development
• One approach to improving federal government IT investments and

encouraged by both OMB and GAO

• Involves planning and delivering new or modified technical functionality or

services to users at least every six months

• The Federal IT Acquisition Reform Act (FITARA), enacted in December 2014,

calls for the Chief Information Officer of each covered agency to annually

certify that IT investments are adequately implementing incremental

development.

• Agile software development supports the practice of
• Continuous software delivery

• Developing solutions that include distinct features, some of which may be

discovered along the way rather than planned up front

PRELIMINARY

Slide 5

Agile Background

• Agile practices integrate planning, design, development, and testing into an iterative
life-cycle to deliver software at frequent intervals

• Short iterations are used to

• Effectively measure progress,

• Reduce technical and programmatic risks, and

• Respond to feedback from stakeholders faster than traditional methods

• More a philosophy than a methodology, the Agile Manifesto articulated four principle
values that prefer

• Individuals and interactions over processes and tools,

• Working software over comprehensive documentation,

• Customer collaboration over contract negotiation, and

• Responding to change over following a plan

While there is value in both parts of each principle, the first part

is seen as most important

PRELIMINARY

Slide 6

Agile Alliance 12 Guiding Principles

1) Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.

2) Welcome changing requirements, even late in development. Agile processes harness change for the customer’s

competitive advantage.

3) Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter

timescale.

4) Business people and developers must work together daily throughout the project.

5) Build projects around motivated individuals. Give them the environment and support they need, and trust them to

get the job done.

6) The most efficient and effective method of conveying information to and within a development team is face-to-face

conversation.

7) Working software is the primary measure of progress.

8) Agile processes promote sustainable development. The sponsors, developers, and user should be able to maintain

a constant pace indefinitely.

9) Continuous attention to technical excellence and good design enhances agility.

10) Simplicity, the art of maximizing the amount of work not done, is essential.

11) The best architectures, requirements, and designs emerge from self-organizing teams.

12) At regular intervals, the team reflects on how to become more effective, then tunes and adjust its behavior

accordingly.

PRELIMINARY

Slide 7

Agile Background
Five Levels Commonly Followed with Agile Planning

Vision

Roadmap

Release

Iteration

Daily
Work

PRELIMINARY

Slide 8 Slide 8

Agile Background
Traditional vs. Agile Development

Traditional Development

• Fixed Requirements

• Linear Development

Approach

• Single delivery of end

product

Agile Development

• Flexible Requirements

• Iterative Development

Approach

• Multiple deliveries over

time

PRELIMINARY

Slide 9

Traditional Development Plan

(Requirements

Development)

Analysis

Design

Coding

Test and

Integration

Operations

Documentation

Code delivered but

not complete

Code released to the

user and ready to go!

PRELIMINARY

Slide 10

Agile Development
Release 1

Design

Build Test

Iteration 1

Design

Build Test

Iteration 2

Release 2
Design

Build Test

Iteration 4

Design

Build Test

Iteration 3

Release

documentation

Code released to the user

and ready to go!

…Etc.

PRELIMINARY

Slide 11 Slide 11

Agile Background
Changes to Program Management Philosophy

Traditional Development Agile Development

Scope

Scope
Cost

Cost

Schedule

Schedule

Fixed

Flexible

Plan

Driven

Value

Driven

PRELIMINARY

Slide 12

Agile Background
Benefits to Estimating

• Effort is commonly used as a proxy for cost

• Without estimating effort, cost cannot be determined for near and long-term

deliverables

• Understanding the capacity (e.g. the total amount of work that Agile teams can

accomplish in the short-term) helps to prioritize work

• Gaining Agile team commitments to delivering near-term features in upcoming

iterations and releases is important because these commitments drive the

planning of customer business objectives.

• Estimating is the key to unlocking the ability to commit

• Agile development focuses on producing incremental deliverables based on team

commitments regarding what will be accomplished in the near-term

As in traditional programs, an estimate is not final and should be updated with

information as it becomes available

PRELIMINARY

Slide 13

GAO and Cost Estimating
12-Step Cost Estimating Process

PRELIMINARY

Slide 14

Agile and Cost Estimating

• Many artifacts that help manage Agile development programs

can be used to inform the cost estimating process

• These artifacts provide a clear picture of the planning that the
program office did to determine the prioritized features and
release / iteration schedule

• New data should be captured at the end of each iteration

• Agile software cost estimates should be updated at the end
of each release (and other important milestones) with actual
costs for the specific features that were implemented

Align the cost estimate with the program’s Agile cadence

PRELIMINARY

Slide 15

Mapping Cost Estimating Best Practices

to Agile Methods

Estimating Process Step Agile Cadence Example

Step 1: Define the estimate’s purpose During initial and subsequent release planning,

determine how any cost estimates will be used.

Step 2: Develop the estimating plan During initial planning, the cost estimating team should

be identified along with all technical experts so that

Agile team capacity measures can be determined.

PRELIMINARY

Slide 16

Mapping Cost Estimating Best Practices to

Agile Methods (Continued)

Estimating Process Step Agile Cadence Example

Step 3: Define the program These steps should occur during initial planning once the Vision and

Roadmap have been developed.

A prioritized product backlog and product-oriented work breakdown

structure (WBS) capture the program requirements that align to the

Vision and Roadmap. The assumed number of iterations, releases,

and size /cost of the Agile teams provide estimators with the

timeframes and loaded labor rates needed to determine the cost to

implement features.

After each iteration, specific Agile artifact data can be used to refine

the estimate including:

• burn up/burn down charts,

• Velocity metrics, and

• additional requirements that were discovered and added to the

backlog

Independent cost estimates should be developed to check the

reasonableness of the initial cost estimate as well as any new

estimates prior to major milestone reviews.

Step 4: Determine the estimating

structure

Step 5: Identify the ground rules and

assumptions

Step 6: Obtain data

Step 7: Develop the point estimate

and compare it to an independent

cost estimate

PRELIMINARY

Slide 17

Mapping Cost Estimating Best Practices to

Agile Methods (Continued)

Estimating Process Step Agile Cadence Example

Step 8: Conduct sensitivity Sensitivity analysis should be conducted on the initial point

estimate once the Vision and Roadmap are completed.

This analysis should be repeated whenever the estimate is

updated to understand what drives cost.

Step 9: Conduct a risk and uncertainty

analysis

Risk and uncertainty analysis should occur after the initial point

estimate has been developed so that risks affecting the work

are known upfront.

This analysis should be updated along with the point estimate

to reflect new Agile artifact data and any technical or schedule

program risks.

PRELIMINARY

Slide 18

Agile and Cost Estimating
12-Step Process (Continued)

Estimating Process Step Agile Cadence Example

Step 10: Document the estimate Documentation of the cost estimate should follow the same

cadence that the Agile project has established for updates to the

Vision, Roadmap, or other strategic documentation.

Step 11: Present the estimate to

management for approval

Management should review and sign off on the estimate and its

underlying ground rules and assumptions before any major

program reviews so that decisions can be based on the most

recent information.

Step 12: Update the estimate to reflect

actual costs/changes

The estimate should reflect the most current Agile artifact data (i.e.

burn up/down charts, velocity, actual vs. planned work, changes in

requirements, program risk assessments, etc.) and capture

variances so that lessons learned can be applied to future

estimates.

At a minimum, the estimate should be updated before any major

milestone decision. Most often, the estimate will be updated at

predetermined times that align with the program’s Agile cadence.

PRELIMINARY

Slide 19

Conclusion

• While the Agile approach is different from traditional software development methods, the

need for a high-quality, reliable cost estimate is still applicable for government

programs.

• The GAO 12-step cost estimating process and associated best practices still apply to

programs using Agile methods.
•

• Agile development generates new data after every iteration which can be used to

continually update the estimate.

• Agile methods lower program technical risk by developing software in small segments

and continually delivering users desired features to obtain early feedback
• Analyses such as sensitivity and risk/uncertainty can still be used to inform management

decisions as more information becomes known about user needs and business value.

• While Agile emphasizes working software over comprehensive documentation,

information regarding initial assumptions, reasons for variances, and lessons learned

should still be captured and used to improve future estimates.

PRELIMINARY

Slide 20

Next Steps – Agile Best Practices Guide in

Development

• GAO is establishing an Agile Development and Implementation guide to

establish a consistent framework based on best practices that can be used

across the federal government for developing, implementing, managing,

and evaluating agencies’ IT investments that rely on Agile methods

• These best practices will be used as a basis for the development of a

chapter focusing on Agile and how it relates to cost, schedule, and EVM

• All chapters will be thoroughly vetted through GAO’s Agile Expert

Group, which meets 3x per year (next meeting will be August 24, 2017)

• An exposure draft of the entire guide will be published to the GAO web-

site for a year-long open comment period

• Those interested in working to develop this guide should contact

Jennifer Leotta, leottaj@gao.gov for more information

mailto:leottaj@gao.gov

PRELIMINARY

Slide 21

Next Steps Agile Guide Draft Outline

• Chapter 1 – Background

• Chapter 2 – Compliance and Past Work

• Chapter 3 – Agile Adoption Best Practices

• Team activities, Program processes, and Organizational Environment

• Chapter 4 – Agile Implementation Challenges

• Chapter 5 - Agile Metrics

• Chapter 6 – Requirements Decomposition

• Chapter 7 – Agile and the Federal Acquisition Process

• Agile and Federal Contracting Process / Budget Process

• Chapter 8 - Agile and Program Management Factors

• Program Planning and Tradeoffs, Team composition

• Chapter 9 – Agile Program Control Best Practices

• Cost estimating, Scheduling, and Earned Value Management

Appendices:

o Agile Glossary

o Effects of not following best

practices

o Agile Methodologies

o Debunking Agile Myths

o Questions for Auditors and

Managers

o Case Study Descriptions

PRELIMINARY

Slide 22

Sources

1. Agile Alliance. (2001). Manifesto for Agile Software Development. Retrieved February 2, 2017, from

http://agilemanifesto.org/

2. Agile Alliance. (2001). Principles behind the Agile Manifesto. Retrieved February 2, 2017, from

http://agilemanifesto.org/principles.html

3. California Department of Technology Project Management Office. (2016). Understanding Agile.

Sacremento: State of California.

4. Elatta, S. (2015). The Agile Lifecycle. Omaha, Nebraska, USA: Agile Transformation, Inc.

5. Federal Aviation Administration. (2016). Federal Aviation Administration: Agile Acquisition Principles and

Practices. Washington, D.C.

6. Fewell, P. (2015). Agile Development in Government Training: Workshop IV. Agile Overview: The Basics.

Washington, D.C., USA: CC Pace.

7. Glover, M., & Dennie, D. (2017, January 27). CMMI-Agile Process Combo. Tysons, VA, USA: Excellence in

Measurement Technology; LMI Technology.

8. Government Acccountablity Office. (2012). Software Development: Effective Practices and Federal

Challenges in Applying Agile Methods. Washington, D.C.: GAO.

9. Government Accountability Office. (2009, March). GAO Cost Estimating and Assessment Guide.

Washington, D.C.: GAO.

10. Government Accountability Office. (2012, January). Design Evaluations: 2012 Revisions. Retrieved

February 7, 2017, from Government Accountablity Office: http://www.gao.gov/assets/590/588146.pdf

11. Government Accountability Office. (2015). Immigration Benefits System: Better Informed Decision Making

Needed on Transformation Program. Washington, D.C.: GAO.

PRELIMINARY

Slide 23

Sources

12. Government Accountability Office. (2016). F-35 Sustainment: DOD Needs a Plan to Address Risks Related

to Its Central Logistics System. Washington, D.C.: Government Accountability Office.

13. Government Accountability Office. (2016). Immigration Benefits System: U.S. Citizenship and Immigration

Services Can Improve Program Management. Washington, D.C.: Government Accountability Office.

14. Government Accountability Office. (2016). Information Technology: Federal Agencies Need to Address Aging

Legacy Systems. Washington, D.C.: Government Accountability Office.

15. Harris, M. (2016). Value Metrics for Agile Governance. Better Software, 24-28.

16. Leffingwell, D. (2011). Agile Software Requirements: Lean Requirements Parctices for Teams, Programs,

and the Enterprise. Upper Saddle River, New Jersey: Addison-Wesley.

17. Modigliani, P., & Chang, S. (2014). Defense Agile Acquisition Guide: Tailoring Department of Defense

Information Technology Acquisition Program Structures and Processes to Rapidly Deliver Capabilities.

Washington, D.C.: The MITRE Corporation.

18. Palmquist, M. S., Lapham, M. A., Miller, S., Chick, T., & Ozkaya, I. (2013, October). Carnegie Mellon

Univeristy. Retrieved February 2, 2017, from Software Engineering Institute:

https://resources.sei.cmu.edu/asset_files/TechnicalNote/2013_004_001_62918.pdf

How Should We Estimate

Agile Projects and

Measure Progress to Plan

Thomas J. Coonce

Glen B. Alleman

Lockheed Martin Global Vision

Center

August 22, 2017

Naval Center for Cost Analysis

Software and IT Cost Analysis

Solutions Team (CAST)

2

“Why do so many big projects overspend and

overrun?

They’re managed as if they were merely

complicated when in fact they are complex.

They’re planned as if everything was known at

the start when in fact they involve high levels of

uncertainty and risk.”

‒ Architecting Systems: Concepts, Principles and

Practice,

Hillary Sillitto

All these Conditions Exist in the Global
Dimension of Modern Acquisition

3

Why Agility Matters?

 Agility Reflects Reality ‒ accepting uncertainty,

driving it out, and reprioritizing efforts based on new

information is how the world works

 Agility Enables Flexibility ‒ the freedom to make

the right decisions at the right time, based on the

right amount of information.

 Agility is Path to the Present ‒ the expectation of

customers, users, and buyers, is that things will be on

a path of constant improvement and zero issues, or

they’ll jump to the next most available platform.

4

The Results is Four Immutable Truths
of Software Development

1. You can’t gather all the requirements upfront.

2. The requirements you do gather will change.

5

3. There is always more

work than time and

money available.

4. Estimates will always

be off by some factor,

and this factor is likely

unknown.

6 Top Level Processes to Increase
Probability of Program Success

6

❶ Pre-Award
 Define desired capabilities
 Assess readiness of

technologies.
 Define war fighter’s use

System
 Define Measures of

Effectiveness
 Create Integrated Master Plan
 Identify uncertainties
 Develop risk-adjusted

estimates

❷ Issue Request for Proposal
 Include Government products
 Specify award criteria
 Update IMP and Uncertainties
 Define key framing

assumptions
 Submit updated cost and

schedule estimate to 70% JCL
 Submit deterministic IMS

❸ Award Based on Criteria
 Establish these criteria in the

Integrated baseline Review
 Measures performance and

award fee against these
criteria

 Use criteria to produce ETC,
EAC, ECD

❹ Awardee Creates Credible
PMB

 Integrated Master Plan
 Technical Plan
 WBS and Dictionary
 Program Management Plan

❺ Install Credible PMB
 Define Measures of

Effectiveness, Measures of
Performance, technical
Performance Measures, or Key
Performance Parameters for
each deliverable

❻ Monitor Progress to Plan
 Ensure technical progress

made according to Plan
 Review cost and schedule

progress according to Plan
 Update risk register
 Identify which activities

require closer monitoring
 in the future

The PMB Connected to Agile
Development Processes

 Horizontal and Vertical traceability for all plans and work, IAW
FAR acquisition rules.

 Using Measures of Physical Percent Complete of the planned
Features using Measures Effectiveness (MoE) and Performance,
(MoP) and Technical Performance Measures (TPM)

7

ConOps IMP
IMS CA/WP with Features in Product

Roadmap and Release Plan

Product

Roadmap

Release

Plan

Product

Backlog

Sprint

Plan

Physical

Percent

Complete

Epics Features Stories Tasks

Traditional

Agile

10 Steps to Apply Agile on Federal
Programs using EVM

8

Closed Loop Feedback Control

for Agile at Scale

❶ Initial
Estimate

 ❷ Product
Roadmap

 ❸ Release
Plan

❺ Product

Backlog

❻ Sprint Backlog

❹ IMS with

Features
in WP

❼ Task Estimates
During Sprint

❽ TO DO Updates Produce
Physical Percent
Complete

❿ Update
Physical
Percent
Complete in
EVMS

❾ Update Feature in
IMS with Physical
Percent Complete

Plan

Do

Check

Act

Continuous feedback at each step with
corrective actions for Root Cause of

Performance Variances

EVM is applied to DHS IT Acquisition projects IAW Capital Planning and Investment Guide

Start with Decomposing the ConOps
into Capabilities, Features, and Stories

9

ConOps

Capability

Feature Feature Feature Feature

Capability

ConOps is a document describing the capabilities of a proposed system from the viewpoint of

an individual who will use that system. It is used to communicate the quantitative (Measure of

Performance) and qualitative (Measure of Effectiveness) characteristics to all stakeholders.

Capabilities needed to

accomplish Mission, defined

from ConOps defined before

Contract Award and placed in

RFP, with flowing down

Measures of Effectiveness and

Measures of Performance

Features from Capabilities,

further refined after Contract

Award in the Product Backlog.

Features decomposed into

Stories and Task in the Agile

system for development

Story Story Story

Task Task Task

First Steps to Estimating Agile
Software Development

10

Increasing Maturity of Agile Estimating Using

Function Points (FP)

Establish a
Repository for
project
performance
information
using Function
Point (FP) from
past projects
to build
Reference
Class
Forecasting DB

Start Feature
Breakdown
Structure (FBS)
from existing
and past
projects.

Record time
and cost for
each Feature
in the FBS for
current
projects.

Decompose
current project
from past FBS
in repository.

Add new
Features as
discovered

Connect time
and cost
estimates to
past FBS. Add
New FBS
Feature
estimates from
Product
Backlog and
Release Plan

Update FBS
repository
with new cost
and and time
data at the of
each Release
or Feature
delivery to
increase
fidelity of DB

Migrating from FP to FBS with Time and Cost data

in Repository, just like WBS

Like the WBS elements in the CCDR database, a Feature Breakdown Structure can be

built from past program and used as Reference Class for future programs. Like FP

Enterprise IT system have many common or derivable elements

11

Reference Class Step By Step

From Nobel Prize to Project Management, Bent Flyvbjerg†

† “From Nobel Prize to Project Management: Getting Risks Right,” Bent Flyvbjerg, Project
Management Journal, Vol. 37, No. 3, August 2006

12

Function Points and Agile

 To measure the productivity and evaluate percent of

increase and decrease in productivity rate

 Helps end users/clients to quantify the number of

requirements emended in software

 Prepare the estimation for software development

 Prepare the cost related metrics for software

development

 Used in Decision Analysis and Resolution

Techniques (DART)

 Used to prepare the resource pyramid for software

development

13

Start Estimating Using Function Points

 For each Capability, list the business and data

transactions for the Features that implement the

Capability

 For each Feature, list the business and data

transactions for the Stories that implement the

Feature

 With the Functional Point count, assess capacity

for work in FPs

14

Measuring Physical Percent Complete

at the Sprint Level

Original
Engineering

Estimate

Estimate of
User Stories in

Sprint

Remaining
Work for Story

0 Remaining
Means Story Done

10 of 10 Remaining
Means Story Not

Stated

Sprint 1 ‒ 100% Complete

After Sprint 1 Feature 32%
Complete, with 60 Hrs

remains

Sprint 2 ‒ 50% Complete

At this point in Sprint 2,
Features 44% Complete

15

Forecasting ETC/EAC with Earned Value

using Physical Percent Complete

 Program performance in

Agile or Traditional is the

same at the PMB level.

 Physical Percent

Complete is measured

at the Feature level from

the Agile SW

Development System.

Although Agile is different and can be challenging, success can be
achieved using the proven principles of Earned Value Management

 BCWS is flat spread, not an S-Curve

 BCWP = BCWS × P%C

16

Summary

 Government requires a credible at the start based on
a quality Concept of Operations (ConOps) for the
system.

 Features, derived from the needed Capabilities,
must be in the ConOps.

 Ideally we want to estimate Features, using a
Reference Class Database containing a Feature
Breakdown Structure ‒ with hours and duration by
Feature.

 Until this database is available, Function Points can
be used to estimate the Agile ConOps.

Progress must be measured as
Physical Percent Complete

17

Thomas J. Coonce

TJC, LLC

tom.coonce@verizon.net

+1 703 362 2568

Glen B. Alleman, MSSM

Niwot Ridge, LLC

Glen.Alleman@niwotridge.com

+1 303 241 9633

Contact Information

mailto:tom.coonce@verizon.net
mailto:Glen.Alleman@niwotridge.com

18

Backup

19

Our Get Off The Stage Message

 Credible estimates start with Reference Class

Database of Function Points models,

 These continue with Engineering Estimate updates

from actual performance and emerging risks, and

 End with the application of effective of program

planning and controls principles.

The Purpose of Credible Estimates

20

Forecasting Future Performance is needed to

Successfully Manage the project so we can …

What Value did we plan to Earn? (BCWS)
Where are we now? (Physical Percent

Complete)
What Value have we Earned to date? (BCWP)

BCWP = BCWS × Physical Percent Complete

Determine where we are now.
And is determined with a simple

calculation, that says …

Data Needed for Program Success
Using Estimates

21

22

Flyvbjerg’s 4-Steps to Reference Class

Forecasting

1) Form the reference class, a collection of similar-to projects for

which there is both history and reasonable insight to the history

so that adjustments for present time can be made.

2) Develop a true distribution of the reference class, and from that

distribution calculate the cumulative probability.

 This probability curve, developed from reference class, the outside

view.

3) Develop the inside view.

 The inside view is a traditional estimate by the project team.

4) Adjust the inside view based on the probability of historical

outcome from the outside view.

 Develop a forecast using the reference class probability confidence

curve.

 Pick a confidence limit, and then adjust the inside view to have a

corresponding confidence.

23

10 Steps to a Credible Estimating

Process
†

† FocusedObjective.Resources/Canvas and Forms/Forecast Assumption Canvas.pdf

1. What are we Planning to
Build?

2. We Know We have to achieve
this when?
 Who give the final “go live”

decision?

3. What’s the customer’s deliver
date?

4. What’s the Cost of Delay for
each Feature in the Delivery?

5. To Start, we need?
 The following prior

software
 The following

questions answered
 A minimum

dedicated team
 Dependencies

 8. What do we need
to learn to Deliver?
 Learn what?
 Learn How?

6. What thing might
Impede our
progress?
 Other projects?
 Events?
 Staff?
 Technical?

9. What Skills do we
need to Deliver?
 Skill?
 Number of People?

7. To deliver, the
following must be
completed as well
 Testing
 Documentation
 Integration

10. How will we avoid
finding quality or
issues too late?

24

Estimating Agile Work in Hours is Required for

Federal contracts issued in Dollars

25

Earned Value Agile

❶ Engineering Estimate

+

Decompose needed Capabilities
into Features for future
Reference Classes of Cost and
Schedule data

Develop the Product Roadmap
and Release Plan for the needed
Capabilities and their Features

Prioritize Features based on
Business Value of estimated
effort (cost and time)

Using prioritized Features and
place them in Product Backlog

Determine uncertainties of
estimate with Monte Carlo
Simulation tool

Define Stories and Tasks for
Sprint, execute that work and
update estimates to produce a
Reference Class Forecasting
database of Agile data

Place this information in the
Performance Measurement
Baseline Work Packages
containing the Features

Use PMB Reference Class
database to estimate emerging
work as the program proceeds

Some Understanding of Agile
Software Development (1)

 Product Roadmap defines what Capabilities are

need.

 The Product Roadmap implements the needed

Capabilities found in the Concept of Operations

 Release Plan states when Features are available to

fulfill the Capabilities.

 Product Backlog contains Features to be

implemented in Sprints.

 Stories define the elements for the Features.

 Tasks define the work to deliver the Story.

26

Some Understanding of Agile
Software Development (2)

 Physical Percent Complete defined by the 100%

completion of a Story with it’s exit criteria.

 BCWS is the flat spread of the Labor for the Sprint.

 BCWP = BCWS × Physical Percent Complete.

 Estimating in Agile answers the question Can we

deliver the Features for the Budget?

 Estimating in Traditional EVMS answers the question

What is the Cost for the needed Features?

27

Executing the Program After
Contract Award

 Using reference class data,

 Compare actual performance with planned

performance, and

 Identify corrective actions needed to keep the

program on plan.

28

Why Agility Matters.
All Modern Projects Operate in Presence of …

 Caprice (Unpredictability): unknowable situations, where …

 Urgent needs regularly occurs

 Un-availability of key personnel and/or subcontractors

 Uncertainty: randomness with unknowable probabilities, about …

 Feasibility of solution design

 Contracting issues, funding gaps, and budget shortfalls

 Risk: randomness with knowable probabilities, for …

 Performance of sub-contractors and suppliers

 Meeting necessary schedules and performance measures

 Variations: knowable variables and variance range, for …

 Availability of critical test/demo facility/personnel

 Performance and behavior differences in multiple COTS-sources

 Evolution: successive external developments, that …

 Change in targeted operating environment

 Change the Availability of superior technology matures

29

30

The Challenge of Agile Estimating

 Subjectivity of how to measure size consistently

in Story Points across the organization

 A Story Point means different things to different

teams

 The meaning of a Story Point changes as the

project progresses

 The only Cardinal value(s) for a program is Time

and Money

 FAR programs report in Time and Money, not

Story Points

31

Agile Estimation Practices

 Benchmarking

 Upfront project estimation and budgeting

 Iteration planning and project re-estimation

 Process improvement monitoring

Agile Estimating Resources

 Estimating Databases

 COSMIC

 NESMA

 COCOMO

 ISBSG

 Tools

 QSM

 SEER

 Price

32

33

Metrics Needed to Successfully Manage A

Program

Evidence of Credible Plan at IBR

1. Key Technical Performance Measures plan(s)

2. Deliverables plan

3. Summary level of the Integrated Master Schedule (IMS)
and proposed budgeted cost of work scheduled

4. Labor FTE utilization plan

5. Schedule health and performance checks

6. Risk register and mitigation actions

7. Computation of initial Management Reserves (MR)

8. Risk burn down plan

9. Computation of Schedule Margin (SM)

34

Metrics Needed to Successfully Manage A

Program (Continued)

Periodic data Ensures C/S Performance
consistent with Technical Progress

10. TPM plan vs estimated actuals vs cost and schedule
performance metrics (CPI, SPI)

11. Deliverables plan vs actuals vs CPI, SPI

12. FTE plan vs actuals

13. Cumulative BCWS, BCWP, ACWP against IBR spend plan,
earned schedule with percent spent, percent complete,
and percent scheduled (Enhanced Gold Card)

14. Risk burn down plan vs actual

15. C/S Performance Informed by Risk Burn Down Actuals

35

Metrics Needed to Successfully Manage A

Program (Continued)

Additional Periodic Data Identifies Current and Likely
Future Problem Areas

16. Schedule heath and schedule performance related data on the
“go-forward” IMS (similar to view # 5)

17. Cumulative BCWS, BCWP, ACWP against IBR spend plan with
Earned Schedule and status dates, percent spent, percent
complete, and percent scheduled (same as # 13)

18. Tornado (or Galaxy) chart that shows the relative percentage of
Budget at Complete to total for any level of WBS

19. Monthly and cumulative charts of CV, SV, CPI, SPI, SPIt for any
level of WBS element or OBS

20. Management Reserve usage and balance

21. Sources and uses of MR and Undistributed Budget

22. Changes to the Baseline (new scope or use of MR)

36

Metrics Needed to Successfully Manage A

Program (Concluded)

Periodic Data That Indicates Current and
Likely Future Problem Areas (Concluded)

22. Updated Risk Register (same as metric/view # 6)

23. Forecast of Estimate At Completion (EAC) and
Estimated Completion Date (ECD)

24. Confidence level of meeting contractor best case,
worst case and most likely EACs and ECDs

25. Schedule and cost crucially indices

37

Successful Solicitation and

Evaluation (1)
†

 Use Presentations as Part of the Technical Evaluation.
Consider including language in the solicitation that the
Government intends to require oral presentations as part of
the offeror’s technical portion of its quote or proposal. This
will enable the Government to determine whether an offeror
truly knows Agile software development. This is not
mandatory, but has proven to be effective for some agencies.
Of note, oral presentations need to be tightly controlled and
recorded to ensure that all offerors are treated equally, that
the Government does not inadvertently open discussions,
and to create a defendable record of the agency’s actions. If
using oral presentations, consider using them after the
competitive range is established. The Government should
clearly spell out the intended use of oral presentations in the
Evaluation Criteria if it chooses to use them.

† TechFAR Handbook for Procuring Digital Services Using Agile Processes

38

Successful Solicitation and

Evaluation (2)

 Integrate Agile into the Technical Factors in the RFQ: For example,

 Factor 1 – Performance Work Statement (“Offerors shall provide a

Performance Work Statement (PWS) in response to the Statement of

Objectives and this RFQ. The proposed solution shall include an

explanation of how project and contract management,

communication/collaboration with the Government, security and privacy

requirements, documentation, and reporting will function in conjunction

with the proposed Agile methodology.”);

 Factor 2 – Product Development Roadmap (“Offerors shall propose an Agile

product development roadmap which correlates how the stated objective

aligns with the timeframe for implementation and the offeror’s proposed

Agile methodology. The product development roadmap shall demonstrate

where testing, training, security, privacy, and cut over planning, will be

included.”);

 Factor 3 – Notional Performance Control Plan (“Offerors shall describe the

QC and Performance Measurement approach, including how proposed

performance standards will be monitored, evaluated, and reported. The

purpose of the notional QCP is to provide evaluators with an understanding

of how measures and metrics will be applied based on the proposed

technical solution.”)

39

Successful Solicitation and

Evaluation (1)

 Request Agile software development-Specific
Information from Offerors. As part of the technical
evaluation, request information from the offerors
addressing how they manage Agile
implementation, techniques for release planning,
plans for engaging end users, methods for
capturing and applying lessons learned, testing
processes, reasons behind the composition of their
Agile teams and the rationale behind the proposed
development talent and project oversight (tied to
Product Vision), how they will make resources
available within schedule and budget constraints,
and their approach to configuration management.

40

Successful Solicitation and

Evaluation (1)

 Evaluate Demonstrated Experience with Agile.

As part of the past experience evaluation

criterion, include demonstrated experience with

successfully developing software using an Agile

approach.

The Framework for Agile Performance
Management using Earned Value

41

Cadence Release 1 Cadence Release n

Feature 1, 2, 3

Feature 4, .. ,8

Feature 9, …,12

Release 2 PP’s

WP

PP

SLPP

in IMS

CA

Sprints

Time Now

Performance Measurement Baseline

Agile Software Development Lifecycle

Feature n’s

The Bright Line

Milestones

Data Items

Product Roadmap

Capabilities in a Release Plan

Agile Development Control Account

Task

Task

Task

Task

Task

Task

Task

Task

Task

…

Starting with a Product Roadmap and Cadence Releases, Earned Value Management + Agile
Integration is straight forward when progress to plan is measured as Physical Percent Complete

BCWS (PV) is the labor
spread at the Sprint level
contained in the Work
Packages.

BCWP (EV) = BCWS ×
Physical Percent Complete
of Features produced by
Sprints.

Physical Percent
Complete from Planned
Stories that implement
the Features in each
Sprint.

42

Knowledge is of two kinds. We know a subject ourselves, or
we know where we can find information upon it

‒ Samuel Johnson

Resources

 COSMIC ‒

http://cosmic-

sizing.org/

 NESMA ‒

http://nesma.org/

 ISBSG ‒

http://isbsg.org/

 IFPUG ‒

http://www.ifpug.org/

43

 QSM ‒

http://www.qsm.com/

 Price ‒

http://www.pricesystem

s.com/

 Galorath ‒

http://galorath.com/

http://cosmic-sizing.org/
http://cosmic-sizing.org/
http://cosmic-sizing.org/
http://cosmic-sizing.org/
http://nesma.org/
http://nesma.org/
http://isbsg.org/
http://isbsg.org/
http://www.ifpug.org/
http://www.ifpug.org/
http://www.qsm.com/
http://www.qsm.com/
http://www.pricesystems.com/
http://www.pricesystems.com/
http://www.pricesystems.com/
http://galorath.com/
http://galorath.com/

Books (1)

 Software Sizing, Estimation, and Risk Management, Daniel Galorath and

Michael Evans, Auerbach, 2006.

 Practical Software Measurement: Objective Information for Decision

Maskers, John McGarry, David Card, Cheryl Jones, Beth Layman, Elizabeth

Clark, Joseph Dean, and Fred Hall, Addison-Wesley, 2002.

 Estimating Software-Intensive Systems: Projects, Products and Processes,

Richard Stutzke, Addison Wesley, 2005.

 Agile Project Management for Government, Brian Wernham, Maitland &

Strong, 2012

 Forecasting and Simulating Software Development Projects: Effecrtive

Modeling of Kanban & Scrum Projects using Monte-Carlo Simulation, Troy

Magennis, Focused Objectives, 2011.

 IT Project Estimation: A Practical Guide to the Costing of Software, Paul

Coombs, Cambridge University Press, 2003.

 Software Project Cost & Schedule Estimating, William Roetzheim and Reyna

Beasley, Prentice-Hall, 1998.

44

Books (2)

 Function Point Analysis: Measurement Practices for Successful Software

Projects 1st Edition, David Garmus, Addison Wesley, 2000.

 Software Sizing and Estimating: Mk II FPA, Charles Symons, John Wiley &

Sons, 1995.

 Progressive Function Point Analysis: Advanced Estimation Techniques for IT

Projects, Ruben Gerad Mathew and Anna Bandura,

 Excel Spread sheet from Source Forge,

https://sourceforge.net/projects/functionpoints/files/latest/download

45

https://sourceforge.net/projects/functionpoints/files/latest/download
https://sourceforge.net/projects/functionpoints/files/latest/download

Papers

 “Is Automated Function Point Counting Useful Yet?,” Zurich Insurance and

David Consulting Group, https://www.softwarevalue.com/

 Assessing COTS Integration Risk Using Cost estimation Inputs, Ye Yang,

Barry Boehm, and Betsy Clark, ICSE, 2006

 “The relative Importance of Project Success Dimensions,” Stan Lipovetsky,

Asher Tishler, Dov Dvir, and Aaron Shenhar, R&D Management 27, 1997.

 “Function Points, Use Case Points, Story Points: Observations From a Case

Study,” Joe Schofield, Alan Arementrout, and Regina Trujillo, Crosstalk,

May/June 2003.

 “Estimate and Measure Agile Projects with Function Points,” Radenko

Corovic.

 “Counting Function Points for Agile / Iterative Software Development,” By

Carol Dekkers, IFPUG, http://www.ifpug.org/Articles/Dekkers-

CountingAgileProjects.pdf

46

https://www.softwarevalue.com/
https://www.softwarevalue.com/
http://www.ifpug.org/Articles/Dekkers-CountingAgileProjects.pdf
http://www.ifpug.org/Articles/Dekkers-CountingAgileProjects.pdf
http://www.ifpug.org/Articles/Dekkers-CountingAgileProjects.pdf

Papers

 “Function Points and Agile – Hand in Hand,” Amol Kumar Keote, Accenture

‒ India Delivery Centre, 2010.

 “Guideline for Sizing Agile Projects with COSMIC,” Sylvie Trudel and

Luigi Buglione, IWSM/MetriKon 2010.

 “Story Points or Function Points or Both?” David Consulting Group, July

2015

 “Estimating Agile Iterations by Extending Function Point Analysis,” A.

Udayan Banerjee, B. Kanakalata Narayanan, and C. Mahadevan P, 2012

World Congress in Computer Science, Computer Engineering and Applied

Computing, Las Vegas, Nevada, July 16-19, 2012

 “Agile and Function Points: A Winning Combination,” Dan French, 2016

ICEAA Professional Development & Training Workshop, Atlanta, GA 2016.

 “From Story Points to COSMIC Function Points in Agile Software

Development – A Six Sigma perspective,” Thomas Fehlmann and Luca

Santillo, MetriKon 2010

47

Papers

 “Using Function Points in Agile Projects,” Célio Santana, Fabiana Leoneo,

Alexandre Vasconcelos, and Cristine Gusmão, Lecture Notes in Business

Information Processing, May 2011.

 “Function Points, Use Case Points, Story Points: Observations From a Case

Study,” Joe Schofield, Alan W. Armentrout, and Regina M. Trujillo,

CrossTalk: The Journal of Defense Software Engineering, May–June 2013.

 “Calibrating Function Points Using Neuro-Fuzzy Technique,” Vivian Xia

Danny Ho Luiz F. Capretz, 21st International Forum on Systems, Software and

COCOMO Cost Modeling, Washington, 2006.

 “A Neuro-Fuzzy Model for Function Point Calibration,” Wei Xia, Danny Ho,

and Luiz Fernando Capretz, WSEAS, Transactions On Information Science &

Applications, Issue 1, Volume 5, January 2008.

 “Effort Estimation with Story Points and COSMIC Function Points - An

Industry Case Study,” Christophe Commeyne, Alain Abran, Rachida

Djouab, Software Measurement News, Vol. 21, No. 1 Pages 25-36.

48

Papers

 “From Story Points to COSMIC Function Points in Agile Software

Development – A Six Sigma perspective,” Thomas Fehlmann and Luca

Santillo, MetriKon 2010, COSMIC.

 “Using NESMA Function Point Analysis in an Agile Context,” Roel van

Rijswijck, Radboud Universiteit Nijmegen, August 2013

 “A New Business Model For Function Point Metrics,” Capers Jones, Capers

Jones and Associates, 8 May 2008

 “Function Point Estimation Methods: A Comparative Overview,” Roberto

Meill and Luca Santillo,

49

22 August 2017

Software & IT-CAST
Presenter: Marc Russo,
Corinne Wallshein

Naval Center for Cost Analysis

marc.russo1@navy.mil
corinne.wallshein@navy.mil

Software Size Growth Study

2

Outline

• Abstract

• Study questions

• GAO recommendation on software growth

• Data

• Percent change overview

• Uncertainty overview

• Example problem

• Correlation and subsets

• Conclusion and future research

3

Abstract

Software cost estimating relationships often rely on software

size growth percentages.

Actual delivered source lines of code (SLOC) may be predicted

with categories of early code estimates such as new, modified,

reuse, and auto-generated SLOC. Uncertainty distributions will

be presented to represent growth by code category for use in

cost modeling.

Uncertainty distributions will be based on the actual percentage

growth for Department of Defense programs’ computer software

configuration items in selected data subsets.

4

Questions Answered by Study

• What is the growth or shrinkage for types of SLOC

(New, Modified, Reused, Auto-Generated, and Total),

requirements, peak staff, effort hours, and duration?

• What uncertainty should be associated with growth?

• Is requirements growth correlated to SLOC growth?

• What other areas can be explored?

5

GAO on Software Growth/Shrinkage

Per 2009 GAO Cost Estimating and Assessment Guide:

“It is extremely important to include the expected growth in

software size from requirements growth or underestimation (that is,

optimism). Adjusting the software size to reflect expected growth

from requirements being refined, changed, or added or initial size

estimates being too optimistic and less reuse than expected is a

best practice. This growth adjustment should be made before

performing an uncertainty analysis [on effort or cost CERs

created from actual, final reports]. Understanding software will

usually grow, and accounting for it by using historical data, will

result in more accurate software sizing estimates.”

6

Data

• Non-random sample of secondary data

• Projects reported at the CSCI level by Software

Resource Data Reports on the OSD/CAPE website

called Cost Assessment Data Enterprise

• Content

– Allows for collection of project context, responsible company

or government entity, certified maturity level, requirements

count, product size, effort hours, and schedule

7

Description of Data Processing

• Analysis based on a subset of paired initial to final

records from 2014 SRDR data set:

– Requirements between 10 and 1000

– Total SLOC between 100 and 1 Million

– Effort Hours below 150,000

Each program submitted:

SRDR Initial Developer Report

(Estimates)

 &

SRDR Final Developer Report

(Actuals)

8

Data Analysis Pedigree

8

911 Completed Program / Build

CSCI Records

2624 Total

CSCI Records

403 Completed CSCIs with

IEEE 12207 break-outs

219 Paired CSCI

Records

Since last ICEAA (2016)

Outliers and records outside analysis scope were excluded

129

analyzed

9

Data Demographics (SLOC)

• All data either reported in Logical Statements (LS) count or converted using the following:

– Logical Statements (LS) = 0.66 x Non-Commented Source Statements (NCSS)

– LS = 0.33 x Physical Source Lines of Code (SLOC)

Variable

Quantiles Moments

Max Median Min Mean Std Dev SE Mean N Skewness Kurtosis CV

Initial New LS 192000 12028 120 25858 36928.37 3251.36 129 2.70 7.81 142.81

Final New LS 268800 18644 500 37370 49402.21 4349.62 129 2.25 5.47 132.20

Initial Modified LS 158718 2000 0 10548 25628.81 2256.49 129 4.33 20.47 242.97

Final Modified LS 196168 640 0 9463 25359.16 2232.75 129 4.99 29.23 267.99

Initial Reused LS 514800 7900 0 44556 94915.04 8356.80 129 3.41 12.18 213.03

Final Reused LS 617008 6000 0 55031 111247.56 9794.80 129 2.89 8.83 202.15

Initial Auto-Generated LS 16490 0 0 293 1940.40 170.84 129 6.94 49.39 661.68

Final Auto-Generated LS 213650 0 0 3247 20735.86 1825.69 129 8.97 86.71 638.53

Initial SLOC LS 614111 48237 904 81256 107902.35 9500.27 129 2.74 8.72 132.79

Final SLOC LS 818071 46200 1169 105111 141337.50 12444.07 129 2.63 8.41 134.47

10

Data Demographics (Other

Variables)

• All data either reported in Logical Statements (LS) count or converted using the following:

– Logical Statements (LS) = 0.66 x Non-Commented Source Statements (NCSS)

– LS = 0.33 x Physical Source Lines of Code (SLOC)

Variable

Quantiles Moments

Max Median Min Mean Std Dev SE Mean N Skewness Kurtosis CV

Initial Effort Hours
133855 18643 575 31122.61

32456.7
7 2857.66 129 1.58 1.85 104.29

Final Effort Hours
139786 27265 1486 37799.27

35288.9
8 3107.02 129 1.27 0.78 93.36

Initial Requirements 990 184 10 274.19 260.11 22.90 129 1.14 0.30 94.86

Final Requirements 965 208 11 275.53 246.38 21.69 129 1.18 0.65 89.42

Initial Duration (Months) 100.11 20.02 0.23 20.59 19.67 1.73 129 1.11 1.64 95.57

Final Duration (Months) 109.09 21.01 0.36 21.48 20.40 1.80 129 1.39 3.56 94.99

Initial Peak Staff 71 8 1 11.84 12.57 1.11 129 2.27 5.68 106.19

Final Peak Staff 69 9 1 12.24 11.70 1.03 129 2.05 5.14 95.61

11

Process Overview

• From the data set have the ability to calculate

percent change from initial to final using this formula:

• Calculations were performed on all code types,

requirement counts, duration in months, effort hours,

and peak staff

• Crystal Ball batch fit capability used to determine

best fit for percent change uncertainty

𝑷𝒆𝒓𝒄𝒆𝒏𝒕 𝑪𝒉𝒂𝒏𝒈𝒆 =
𝑭𝒊𝒏𝒂𝒍 − 𝑰𝒏𝒊𝒕𝒊𝒂𝒍

𝑰𝒏𝒊𝒕𝒊𝒂𝒍

12

Percent Change (PC) Summary

SLOC (Logical Statements [LS])
New LS Mod LS Reused LS Total SLOC in LS

Max Median Min Mean Std Dev SE Mean N SkewnessKurtosis CV

PC for New LS 21.90 0.37 -0.94 1.26 3.16 0.28 129 4.57 25.27 251.23

PC for Modified LS 182.73 0.01 -1.00 2.65 19.26 2.02 91 9.28 87.58 726.13

PC for Reused LS 24.88 -0.11 -1.00 0.55 3.49 0.38 83 5.23 31.30 634.92

PC for Auto-Generated LS 1.01 -0.78 -1.00 -0.39 0.94 0.47 4 1.89 3.61 -242.09

PC for Total SLOC in LS 18.55 0.05 -0.93 0.78 2.20 0.19 129 4.86 33.58 281.32

Variable
Quantiles Moments

13

Percent Change (PC) Summary

Other Variables

Effort Hours Requirements Peak Staff Duration (Months)

Max Median Min Mean Std Dev SE Mean N SkewnessKurtosis CV

PC in Duration (Months) 32.63 0.01 -0.98 0.53 2.99 0.26 129 9.89 105.71 567.83

PC in Effort Hours 11.20 0.14 -0.78 0.72 1.75 0.15 129 3.94 18.47 243.93

PC in Requirements 9.71 0.00 -0.83 0.36 1.51 0.13 129 4.38 21.08 415.21

PC in Peak Staff 2.67 0.00 -0.79 0.17 0.54 0.05 129 2.11 6.09 308.01

Variable
Quantiles Moments

14

Uncertainty Overview

15

Uncertainty Distributions

SLOC Percent Change (Example)
Distribution A-D

A-D P-
Value

Parameters

Lognormal 1.765 0.000 Mean=0.724, Std. Dev.=1.712, Location=-1.073
Gamma 3.576 0.000 Location=-0.940, Scale=1.421, Shape=1.212
Max Extreme 5.498 0.000 Likeliest=0.102, Scale=0.946
Weibull 8.428 0.000 Location=-0.935, Scale=1.508, Shape=0.791
Logistic 8.895 0.000 Mean=0.385, Scale=0.881
Normal 15.207 0.000 Mean=0.782, Std. Dev.=2.20
Student's t 15.866 --- Midpoint=0.782, Scale=0.781, Deg. Freedom=1.057
Min Extreme 27.727 0.000 Likeliest=2.239, Scale=4.740
BetaPERT 35.720 --- Minimum=-1.01, Likeliest=-0.935, Maximum=20.194
Beta 96.275 --- Min=-0.426, Max=403.425, Alpha=0.3, Beta=100
Triangular 114.089 --- Minimum=-1.01, Likeliest=-0.935, Maximum=20.194
Uniform 172.307 0.000 Minimum=-1.084, Maximum=18.698

To ensure that uncertainty range

does not provide a negative value

(for Total SLOC) each distribution

needs to be truncated at -1

16

Uncertainty Distributions

SLOC Percent Change

New SLOC

Reuse SLOC

Modified SLOC

- Auto-generated distribution not available due to

Crystal Ball Batch Fit requiring 15 data points
- See Data Demographic chart

Evidence

of

truncation

17

Uncertainty Distributions

Other Variables Percent Change

Requirements

Count
Duration

(Months)

Development

Hours

Peak Staff

18

Example

• Program is able to provide SLOC, in logical

statements, by initial New, Modified, Reuse,

and Auto-Generated

• To estimate final data sizes, apply growth

factors to initial data sizes

• Program Data:

 CSCI
New

(Initial)

Mod

(Initial)

Reuse

(Initial)

Auto

(Initial)

1 200 4,699 31,144 16,490

2 200 2,236 22,803 340

3 3,354 1,147 67,083 25,660

4 10,000 15,000 275,000 1,100

19

Example cont.

• Apply formula to initial variables

 Final = Initial * (1 + Percent Change)

• Apply uncertainty (example)

CSCI
New

(Initial)

1+ New

PC

Mod

(Initial)

1+ Mod

PC

Reuse

(Initial)

1+ Reuse

PC

Auto

(Initial)

1 + Auto

PC

1 200 1+ 1.26 4,699 1 + 2.65 31,144 1 + .55 16,490 1 - .39

2 200 1+ 1.26 2,236 1 + 2.65 22,803 1 + .55 340 1 - .39

3 3,354 1+ 1.26 1,147 1 + 2.65 67,083 1 + .55 25,660 1 - .39

4 10,000 1+ 1.26 15,000 1 + 2.65 275,000 1 + .55 1,100 1 - .39

1+ New PC

1+ 1.26

20

• Results

• Uncertainty
– As an example the uncertainty distribution and analysis is provided for CSCI 1 New

Example

CSCI
New

(Initial)

1+ New

PC

New

(Final)

Mod

(Initial)

1+ Mod

PC

Mod

(Final)

Reuse

(Initial)

1+ Reuse

PC

Reuse

(Final)

Auto

(Initial)

1 + Auto

PC

Auto

(Final)

1 200 1+ 1.26 451 4,699 1 + 2.65 17,166 31,144 1 + .55 48,284 16,490 1 - .39 10,082

2 200 1+ 1.26 451 2,236 1 + 2.65 8,168 22,803 1 + .55 48,284 340 1 - .39 208

3 3,354 1+ 1.26 7,571 1,147 1 + 2.65 4,190 67,083 1 + .55 48,284 25,660 1 - .39 15,689

4 10,000 1+ 1.26 22,573 15,000 1 + 2.65 54,795 275,000 1 + .55 48,284 1,100 1 - .39 673

New

(Final)

451

Percentile
New

(Final)

10th 88

Mean 429

90th 907

Uncertainty in growth levels should be applied to all CSCI factors

21

Program Type Break Out

22

Program Type Percent Change

SLOC Total

Mean 0.426

Std Dev 1.429

Std Err Mean 0.312

Upper 95% Mean 1.076

Lower 95% Mean -0.225

N 21

Aircraft- Fixed

Wing

Aircraft- Rotary

Wing

Mean 0.173

Std Dev 0.436

Std Err Mean 0.121

Upper 95% Mean 0.436

Lower 95% Mean -0.090

N 13

C2-4I & Other

Mean 0.790

Std Dev 1.78

Std Err Mean 0.215

Upper 95% Mean 1.218

Lower 95% Mean 0.361

N 69

Mean 0.222

Std Dev 1.158

Std Err Mean 0.366

Upper 95% Mean 1.050

Lower 95% Mean -0.606

N 10

Missiles Radar

Mean 4.563

Std Dev 7.970

Std Err Mean 3.564

Upper 95% Mean 14.459

Lower 95% Mean -5.333

N 5

Ships

Mean 0.924

Std Dev 1.066

Std Err Mean 0.321

Upper 95% Mean 1.640

Lower 95% Mean 0.208

N 11

Mean Total SLOC percent change for all programs was 0.78

23

Program Type Percent Change

New SLOC

Mean 1.695

Std Dev 4.734

Std Err Mean 1.033

Upper 95% Mean 3.850

Lower 95% Mean -0.460

N 21

Aircraft- Fixed

Wing

Aircraft- Rotary

Wing

Mean 1.487

Std Dev 1.607

Std Err Mean 0.446

Upper 95% Mean 2.458

Lower 95% Mean 0.516

N 13

C2-4I & Other

Mean 1.125

Std Dev 3.135

Std Err Mean 0.377

Upper 95% Mean 1.879

Lower 95% Mean 0.372

N 69

Mean 1.625

Std Dev 3.332

Std Err Mean 1.054

Upper 95% Mean 4.009

Lower 95% Mean -0.759

N 10

Missiles Radar

Mean 0.811

Std Dev 1.171

Std Err Mean 0.524

Upper 95% Mean 2.264

Lower 95% Mean -0.643

N 5

Ships

Mean 0.846

Std Dev 1.180

Std Err Mean 0.356

Upper 95% Mean 1.639

Lower 95% Mean 0.054

N 11

Mean New SLOC percent change for all programs was 1.26

24

Program Type Percent Change

Modified SLOC

Mean 0.130

Std Dev 1.082

Std Err Mean 0.248

Upper 95% Mean 0.652

Lower 95% Mean -0.391

N 19

Aircraft- Fixed

Wing

Aircraft- Rotary

Wing

Mean 4.105

Std Dev 5.424

Std Err Mean 1.918

Upper 95% Mean 8.640

Lower 95% Mean -0.430

N 8

C2-4I & Other

Mean 3.880

Std Dev 26.401

Std Err Mean 3.811

Upper 95% Mean 11.546

Lower 95% Mean -3.786

N 48

Mean 0.646

Std Dev 0.996

Std Err Mean 0.352

Upper 95% Mean 1.478

Lower 95% Mean -0.187

N 8

Missiles Radar

Mean 4.387

Std Dev 7.942

Std Err Mean 4.585

Upper 95% Mean 24.117

Lower 95% Mean -15.34

N 3

Ships

Mean 0.309

Std Dev 0.814

Std Err Mean 0.364

Upper 95% Mean 1.320

Lower 95% Mean -0.701

N 5

Mean Modified SLOC percent change for all programs was 2.65

25

Program Type Percent Change

Reuse SLOC

Mean -0.032

Std Dev 1.139

Std Err Mean 0.276

Upper 95% Mean 0.554

Lower 95% Mean -0.618

N 17

Aircraft- Fixed

Wing

Aircraft- Rotary

Wing

Mean -0.138

Std Dev 0.278

Std Err Mean 0.080

Upper 95% Mean 0.039

Lower 95% Mean -0.314

N 12

C2-4I & Other

Mean 0.370

Std Dev 2.827

Std Err Mean 0.447

Upper 95% Mean 1.274

Lower 95% Mean -0.534

N 40

Mean 0.707

Std Dev 2.746

Std Err Mean 0.971

Upper 95% Mean 3.002

Lower 95% Mean -1.589

N 8

Missiles Radar

Mean -0.041

Std Dev 0.168

Std Err Mean 0.118

Upper 95% Mean 1.464

Lower 95% Mean -1.546

N 2

Ships

Mean 6.877

Std Dev 12.129

Std Err Mean 6.065

Upper 95% Mean 26.177

Lower 95% Mean -12.424

N 4

Mean Reuse SLOC percent change for all programs was 0.55

26

Program Type Percent Change

Duration (Months)

Mean 0.316

Std Dev 0.954

Std Err Mean 0.208

Upper 95% Mean 0.751

Lower 95% Mean -0.118

N 21

Aircraft- Fixed

Wing

Aircraft- Rotary

Wing

Mean 3.581

Std Dev 8.814

Std Err Mean 2.445

Upper 95% Mean 8.907

Lower 95% Mean -1.746

N 13

C2-4I & Other

Mean 0.187

Std Dev 0.852

Std Err Mean 0.103

Upper 95% Mean 0.392

Lower 95% Mean -0.018

N 69

Mean 0.161

Std Dev 0.960

Std Err Mean 0.304

Upper 95% Mean 0.848

Lower 95% Mean -0.526

N 10

Missiles Radar

Mean 0.167

Std Dev 0.230

Std Err Mean 0.103

Upper 95% Mean 0.452

Lower 95% Mean -0.118

N 5

Ships

Mean -0.054

Std Dev 0.322

Std Err Mean 0.097

Upper 95% Mean 0.163

Lower 95% Mean -0.270

N 11

Mean Duration percent change for all programs was 0.53

27

Program Type Percent Change

Effort (Hours)

Mean 0.863

Std Dev 2.505

Std Err Mean 0.547

Upper 95% Mean 2.003

Lower 95% Mean -0.277

N 21

Aircraft- Fixed

Wing

Aircraft- Rotary

Wing

Mean 0.665

Std Dev 0.946

Std Err Mean 0.262

Upper 95% Mean 1.236

Lower 95% Mean 0.093

N 13

C2-4I & Other

Mean 0.864

Std Dev 1.902

Std Err Mean 0.229

Upper 95% Mean 1.321

Lower 95% Mean 0.407

N 69

Mean 0.425

Std Dev 0.445

Std Err Mean 0.141

Upper 95% Mean 0.744

Lower 95% Mean 0.106

N 10

Missiles Radar

Mean 0.025

Std Dev 0.261

Std Err Mean 0.117

Upper 95% Mean 0.349

Lower 95% Mean -0.299

N 5

Ships

Mean 0.177

Std Dev 0.242

Std Err Mean 0.073

Upper 95% Mean 0.340

Lower 95% Mean 0.014

N 11

Mean Effort percent change for all programs was 0.72

28

Program Type Percent Change

Requirements

Mean 0.863

Std Dev 2.505

Std Err Mean 0.547

Upper 95% Mean 2.003

Lower 95% Mean -0.277

N 21

Aircraft- Fixed

Wing

Aircraft- Rotary

Wing

Mean 0.055

Std Dev 0.119

Std Err Mean 0.033

Upper 95% Mean 0.127

Lower 95% Mean -0.017

N 13

C2-4I & Other

Mean 0.542

Std Dev 1.942

Std Err Mean 0.234

Upper 95% Mean 1.008

Lower 95% Mean 0.075

N 69

Mean 0.272

Std Dev 1.473

Std Err Mean 0.466

Upper 95% Mean 1.325

Lower 95% Mean -0.782

N 10

Missiles Radar

Mean 0.037

Std Dev 0.189

Std Err Mean 0.085

Upper 95% Mean 0.272

Lower 95% Mean -0.198

N 5

Ships

Mean -0.029

Std Dev 0.100

Std Err Mean 0.030

Upper 95% Mean 0.038

Lower 95% Mean -0.096

N 11

Mean Requirements percent change for all programs was 0.36

29

Program Type Percent Change

Peak Staff

Mean 0.108

Std Dev 0.442

Std Err Mean 0.096

Upper 95% Mean 0.310

Lower 95% Mean -0.093

N 21

Aircraft- Fixed

Wing

Aircraft- Rotary

Wing

Mean 0.050

Std Dev 0.483

Std Err Mean 0.134

Upper 95% Mean 0.342

Lower 95% Mean -0.242

N 13

C2-4I & Other

Mean 0.177

Std Dev 0.537

Std Err Mean 0.065

Upper 95% Mean 0.306

Lower 95% Mean 0.048

N 69

Mean 0.185

Std Dev 0.580

Std Err Mean 0.183

Upper 95% Mean 0.600

Lower 95% Mean -0.229

N 10

Missiles Radar

Mean -0.075

Std Dev 0.098

Std Err Mean 0.044

Upper 95% Mean 0.047

Lower 95% Mean -0.196

N 5

Ships

Mean 0.539

Std Dev 0.749

Std Err Mean 0.226

Upper 95% Mean 1.042

Lower 95% Mean 0.036

N 11

Mean Peak Staff percent change for all programs was 0.17

30

Additional Explorations

31

Requirements and SLOC

• Are Requirements and

SLOC correlated?

• The data set shows no

correlation between

total SLOC change

and requirements

change though they

both increase

• A second look,

removing items with

requirements count

over 200, shows

similar trend

SLOC_Change 0.78

Req_Change 0.36

Mean Difference 0.42

Std Error 0.23

N 129

Correlation 0.025

SLOC_Change 0.62

Req_Change 0.14

Mean Difference 0.48

Std Error 0.27

N 53

Correlation -0.049

Continued analysis into how requirements growth is related to SLOC should be conducted

32

New/Upgrade Percent Change

ANOVA Analysis

Oneway Anova Summary of Fit

R2 0.053

Adjusted R2 0.045

Root Mean Square Error 2.149

Mean of Response 0.782

Observations (or Sum Wgts) 129

Oneway Anova Summary of Fit

R2 1.29e-5

Adjusted R2 -0.008

Root Mean Square Error 1.760

Mean of Response 0.719

Observations (or Sum Wgts) 129

Mean difference for SLOC percent change for New versus Upgrade is pronounced

Means for Effort Hours percent change for New versus Upgrade are similar

33

Conclusion and Future Research

• From this analysis, Percent Change averages and

uncertainties are available to estimate growth and cross

check software cost estimates

• Based on the 129 data points, requirements growth is not

directly correlated to Total SLOC growth

– Mean percent change for both requirements and Total SLOC grows

• Percent change analysis should be updated and improved as

more data becomes available

• Analysis on software size growth will be continued

34

Questions?

Adapting a classic Independent Cost
Estimation (ICE) Cost Shop for Agile and

DevOPS estimates

Software & IT CAST

August 2017

David P. Seaver
Senior Technical Analyst
National Security Agency

Unclassified for official use only 1 9/1/2017

Outline

• Definitions

• Changes to Process

• Changes to Data Collection

• Problem and Solution

– Business Systems

– Analytics

– Infrastructure Projects

Unclassified for official use only 2 9/1/2017

DEFINITIONS

Part 1

Unclassified for official use only 3 9/1/2017

DevOPS
• DevOps (development and operations) is an enterprise software development phrase used to

mean a type of agile relationship between development and IT operations. The goal of DevOps
is to change and improve the relationship by advocating better communication and
collaboration between these two business units.

• Under a DevOps model, development and operations teams are no longer “siloed.”

– Sometimes, these two teams are merged into a single team where the engineers work
across the entire application lifecycle, from development and test to deployment to
operations, and develop a range of skills not limited to a single function.

• These teams use practices to automate processes that historically have been manual and slow.

– They use a technology stack and tooling which help them operate and evolve applications
quickly and reliably.

– These tools also help engineers independently accomplish tasks (for example, deploying
code or provisioning infrastructure) that normally would have required help from other
teams, and this further increases a team’s velocity.

• For more information (since I am not defining agile today for you)

– https://en.wikipedia.org/wiki/Agile_software_development

– https://aws.amazon.com/devops/what-is-devops/

Unclassified for official use only 4 9/1/2017

https://en.wikipedia.org/wiki/Agile_software_development
https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/

DevOPS….

• Agency has been reorganized around a DevOPS perspective
– Development and Operations merged into same organization
– Architecture consolidated onto a common, managed cloud

platform
– New oversight/governance based on a new requirements

process
• Strategic goal suitable for board of directors and senior

management oversight and approval
• Initiative

– Epic
» Outcome

• Story
• Story
• Story

Unclassified for official use only 5 9/1/2017

Elementary Process
(It’s a Function Point Thing)

• Elementary Process: represent the smallest whole unit of
work that is meaningful to the user (any person or thing that
interacts with the application).

Unclassified for official use only 6 9/1/2017

CHANGES TO ESTIMATION PROCESS
Part 2

Unclassified for official use only 7 9/1/2017

NSA Process to Estimate Software
Identify the boundary
of the application

• What data is maintained by the
application

• What data feeds need to be
accommodated

• External data sources
Count
elementary
processes

• Create, Update,
Delete, Report,
Read/Query

Count data groups
• Maintained by elementary

process (typically create)

• Data in other applications
that is utilized to support
an elementary process

Enter
information

in SFP
Toolkit

Calculate
Software

Size, Effort
and

Schedule

Review with
Stakeholders

and revise as
needed

Calibration

• SLOC from
UCC

• Automated
Function
Points

Description
of Solution

Start here

Evaluate what
you have done

before!

Unclassified for official use only

8 9/1/2017 If its red its changed

Changes to Estimation Process

• Description of the Solution:

– No longer getting Functional Requirements Documents,
the descriptions of capabilities we are receiving are not
detailed enough to provide reliable cost estimates

• Review with Stakeholders: This issue overlaps with the lack of
detailed requirements. It can be difficult to identify all the
stakeholders

– Users

– Development team

– Sponsor

Unclassified for official use only 9 9/1/2017

Example
• Initiative: Toolbox for conducting business

– Establish a modern relationship management and business intelligence platform
for Agency officers featuring integrated capabilities for effectively anticipating and
compliantly addressing customer needs. Provide a drastically improved, simplified
and streamlined digital experience through an intuitive interface that continuously
adapts to the officers evolving needs and preferences

– Epic

• System enables officer to effectively expand relationship management
(manage partnerships, activities and strategies to align with customer needs)
by understanding what was is, and could be (schedule and track exchanges,
visits agreements etc)

– Outcome: Manage information for a 21st century mission by expanding
relationships, coordinating activities, aligning strategies and tracking the
outcomes to maximize the value and impact of partnerships while
protecting sensitive equities

» Story: I need to know the value of my partner’s resources to my
organization in order to identify opportunities for maintaining,
optimizing and broadening relationships

» Story:…………………………………………………….

» Story:…………………………………………………….

Unclassified for official use only 10 9/1/2017

Example

9/1/2017 Unclassified for official use only 11

Requirement Text Create Update Delete Read Report Save TMULT DMULT FP SLOC (Java)

•Initiative: Toolbox for conducting business 1 1 0 0

–Establish a modern relationship management and business intelligence
platform for Agency officers featuring integrated capabilities for effectively
anticipating and compliantly addressing customer needs. Provide a drastically
improved, simplified and streamlined digital experience through an intuitive
interface that continuously adapts to the officers evolving needs and preferences

–Epic

•System enables officer to effectively expand relationship management
(manage partnerships, activities and strategies to align with customer needs)
by understanding what was is, and could be (schedule and track exchanges,
visits agreements etc)

–Outcome: Manage information for a 21st
century mission by expanding relationships,
coordinating activities, aligning strategies and
tracking the outcomes to maximize the value
and impact of partnerships while protecting
sensitive equities

1

1

1

1

1

1

4

4

128

6,784

»Story: I need to know the value of my
partner’s resources to my organization in order
to identify opportunities for maintaining,
optimizing and broadening relationships

1

1

1

1

1

1

3

3

96

5,088

»Story:…………………………………………………….

»Story:…………………………………………………….

2

2

2

2

2

2

7

7

224 11,872

Words that define Elementary Processes

Unclassified for official use only 12

Accept Import Interface Detect

Add Ingest Provide Display

Adjust Inputs Track Distribution

Apply Link Browse Export

Assign Log Enquire Generate

Associate Maintain Extract Identify

Change Make Inactive Inquire Inform

Combine Manage List Knowledge

Create Modify Pick List Measure

Data Source Provenance View Outputting

Delete Purge Allocate Report

Enrich Smart Data Tagging Analyze Tabulate

Enter Store Correlate

Elementary Process: Represent the smallest whole unit of work that is
meaningful to the user (any person or thing that interacts with the
application). They are transactions that move data, or data that’s at rest.

9/1/2017

CHANGES TO DATA COLLECTION
Part 3

Unclassified for official use only 13 9/1/2017

Data Averages

Unclassified for official use only 14

Metric Average Value

Function Points/ Requirement 24

Hours/Function Point 8

Hours/SLOC 0

Function Points 1,628

Requirements 112

Hours 43,901

Person Months 283

FTE (for a year) 24

SLOC 79,142

Function Point/ PM 6

SLOC/Hour 2

9/1/2017

Programming Languages

Unclassified for official use only 15

Language %

Bash 2.5%

C_CPP 13.3%

CSS 3.5%

HTML 14.0%

Java 41.0%

JavaScript 10.2%

JSP 0.4%

Python 2.3%

XML 9.6%

Ruby 0.1%

SQL 1.8%

Perl 1.2%

9/1/2017

Code Data

Unclassified for official use only 16

Category Developed Duplicate GOTS/COTS/FOSS Test AutoGen Totals

SLOC 4,061,083 6,407,518 4,907,975 2,170,031 120,297 17,666,904

% 23% 36% 28% 12% 1%

Median 126,594 1,108 17,616 19,523 33,201

Min 468 - - 111 -

Max 743,846 2,664,416 2,059,046 794,658 -

9/1/2017

PROBLEM AND SOLUTION
Part 4

9/1/2017 Unclassified for official use only 17

The dilemma

• We are getting capability statements/mission needs and
proposed head counts

• Senior management wants to manage the portfolio at the
missions needs statement level

• We could predict how much code we can create using
historical data

– But that’s not really a satisfying solution

– I cannot really relate that back to the mission need

– And its difficult to measure progress using source code

9/1/2017 Unclassified for official use only 18

Proposed Solution

• We have on average ~ 24 Function Points per Requirement.

• From our historical data we know on average that:

– 20% of the requirements are for Data entities

– 80% of the requirements are for Transactions

• So each requirement can account for roughly

– 5 transactions; or

– 4 transactions and 1 Data entity

• The development team provides us with high level mission
needs statements and proposed FTE to implement the
capability

9/1/2017 Unclassified for official use only 19

Proposed Solution version 1
Requirement Tcount Dcount

Propsed
FTE

Hours
(1880)

Function
Points

(Hours /8)

Revised
Tcount

*

Revised
Dcount

**

Estimated
Requirements

(FP/24)

–Outcome: Manage information for a
21st century mission by expanding
relationships, coordinating activities,
aligning strategies and tracking the
outcomes to maximize the value and
impact of partnerships while protecting
sensitive equities 20 4 8 15,040

1,880

301

54

78

»Story: I need to know the value of my
partner’s resources to my organization
in order to identify opportunities for
maintaining, optimizing and broadening
relationships 15 3 10 18,800

2,350

376

67

98

9/1/2017 Unclassified for official use only 20

• Version 1 is a generic approach
• We are working on a more sophisticated model based on different metrics for

business systems, analytics and infrastructure projects
• Our preliminary analysis indicates that the ration of transactions to data

entities changes for each of those types of projects

Proposed Solution version 1-2
Requirement Tcount Dcount

Propsed
FTE

Hours
(1880)

Function
Points

(Hours /8)

Revised
Tcount

*

Revised
Dcount

**

Estimated
Requirements

(FP/24)

–Outcome: Manage information for a
21st century mission by expanding
relationships, coordinating activities,
aligning strategies and tracking the
outcomes to maximize the value and
impact of partnerships while protecting
sensitive equities 20 4 8 15,040

1,880

301

54

78

»Story: I need to know the value of my
partner’s resources to my organization
in order to identify opportunities for
maintaining, optimizing and broadening
relationships 15 3 10 18,800

2,350

376

67

98

9/1/2017 Unclassified for official use only 21

• * Transactions are typically 80% of our Function point size, to estimate transactions
we take 80% of total Function Points, then divide by 5 (multiplier for transactions)

• ** Data is typically 20% of our Function point size. To estimate data entities we
take 20% of total Function Points and divide by 7 (multiplier for transactions)

Next Steps

• My group has approximately 200 projects to evaluate over the
next year

• We will be applying this initial model and revising it as we get
more data

• We are completing a pilot with the CAST AFP tool and will be
adding that to the data collection to add delivered function
points and enhancement function points to the database

9/1/2017 Unclassified for official use only 22

Questions

?

9/1/2017 Unclassified for official use only 23

Assessing Enterprise Resource Planning (ERP)
Cost, Schedule and Size Growth

Authors:

Haset Gebre-Mariam

Abishek Krupanand

Robert Williams

22 August 2017
Software & Information Technology-Cost Analysis Solutions Team

(Software & IT-CAST)

2

Outline

• Introduction

• ERP Overview

• Data Analysis Approach

• Data Demographics

• Cost and Schedule Growth

• Benchmarks

• Conclusion

3

Problem Statement

• Program Office estimates of Enterprise Resource
Planning (ERP) implementation costs and schedules are
inaccurate, despite increased oversight

• All major DoD ERP deployed programs experienced

 Cost Growth

 Schedule Delays

As of Dec. 2016, DoD has invested more than $16B in their
deployed nine ERP programs!

4

Purpose of Study

• Analyze performance of nine (9) ERP programs in
terms of cost and schedule growth at each
Authority to Proceed (ATP) event

• Establish cost and schedule benchmarks to
crosscheck early estimates, such as Business Case
Analysis and/or Special Studies

Overview

6

What is ERP?

Enterprise Resource Planning (ERP) systems are typically commercial

software systems that integrate an organization’s core business

functions around a unified data base.

If a program is not labeled an ERP, it still may be one

ERP definition, in terms of cost

characteristics, is related to the

scope and integration of multiple

business systems/processes

7

How is ERP implemented?

Business processes are automated via an integrated COTS
software application:

Oracle
44%

SAP
56%

Current Major Deployed DoD ERP
Programs

 Integration is typically done by a 3rd Party Vendor

http://en.wikipedia.org/wiki/File:SAP_logo.svg
http://en.wikipedia.org/wiki/File:Dynamics_brand.png

8

C
u

rr
e

n
t

Fu
tu

re
 (

Se
p

-2
0

1
7

)

DoD Acquisition Cycle
Current vs Future*

System Acquisition Sustainment

PDR = Preliminary Design Review; CDR = Critical Design Review; IOC = Initial Operational Capability; FD = Full Deployment;

New Defense Business System (DBS) Acquisition Cycle uses the Authority to Proceed (ATP) decision points roughly
equivalent to Milestones in the previous DoDI release

*Adapted from DoDI 5000.75, February 2, 2017, pp 5, Figure 1

Adapted from DoDI 5000.02, November 26, 2013, pp. 5, Figure 1

Materiel Development
Decision

IOC FD

Disposal
Post-CDR
Assessment PDR CDR

Procurement & Deployment
Technology

Development
Full Scale Development

Operations &
Support

Materiel Solution
Analysis

Fielding Decision Go-Live Contract
Award

A B C

Milestone / ATP Other Key Decisions/Reviews Phases

Capability
Support

Business System Acquisition,
Testing & Deployment

Business Solution
Development

Business System Functional
Requirements & Acquisition
Planning

Capability Support
Capability Needs
Identification

Solution
Analysis

Functional
Requirements

Acquisition
Limited

Deployment
Full

Deployment

ATP1 ATP2 ATP3 ATP5 ATP ATP4

9

Business System
Acquisition, Testing &
Deployment

Business Capability Acquisition Cycle
(Future)*

Business
Solution
Development

Business System Functional
Requirements & Acquisition
Planning

Capability
Support

ATP1 ATP2

Solution
Analysis

Capability
Needs
Identification

ATP3

Functional
Requirements

Acquisition

ATP5 ATP

Limited
Deployment

Full
Deployment

Capability
Support

ATP4

Market Research

Process -------------------> IT

IT Solution
Approach ---------------------------> Selection

IT Requirements
Functional Requirements--------------> Design Specification

<-- Organizational Change Management --->

*Adapted from DoDI 5000.75, February 2, 2017, pp 5, Figure 1

Authority to Proceed (ATP) are “milestone-like events”

Data Analysis Approach

11

Data Analysis Process Flow

• Dataset normalized to “account for sizing units, application complexity, and
content so they are consistent for comparisons” (source: GAO)

Normalize Data

Define Cost and Schedule Assumptions

Factors

and
Benchmarks

Validate Data

Data Sources

12

Data Sources

Cost, Schedule, and Technical Data from Authoritative Sources:

http://dcarc.cape.osd.mil/Default.aspx

Cost
Approved Cost Estimate

Final Cost Model

Schedule
MAIS Annual Report (MAR)

MAIS Quarterly Report

http://www.acq.osd.mil/damir/

Technical

Cost Analysis Requirements
Document (CARD)

Software Resources Data Report
(SRDR)

 Data analysis is based on nine ERP deployed programs

13

Cost Elements*

Design/ Configuration/Customization
Program Management
Systems Engineering
Change Management
Training Development
Development Test & Evaluation

Deployment Software Licenses
Deployment Hardware Procurement

User Training
Site Installation/Activation
Data Conversion
Execution Cut-over
Interim Sustainment
Operational Test & Evaluation

Assumptions Cost in Base Year 2016 Dollars

Cost in Base Year 2016 Dollars

Cost in Base Year 2016 Dollars

Authority to Proceed (ATP) are “milestone-like events” *Adapted from MIL-STD-881D Appendix K (unpublished draft as of March 6, 2017)

Fielding

Limited
Deployment

Full
Deployment

Functional
Requirements

Cost Group

Milestones

Activities

Solution
Analysis

Development Cost

Deployment Cost

ATP1 ATP3 ATP4 ATP5 ATP2

Acquisition

Procurement Development

System Acquisition*
* Acquisition includes all associated costs from Solution Analysis ATP throughout Full Deployment ATP

Cost Assumptions

14

Schedule Assumptions
Current vs. Future Acquisition Process

Milestone A

Milestone C

Full Deployment Decision

Full Deployment

Deployment
Phase

Development
Phase

Sy
st

e
m

 A
cq

u
is

it
io

n

Milestone B

Solution Analysis ATP

Acquisition ATP

Limited Deployment ATP

Full Deployment ATP

Functional Requirements ATP

Future Acquisition Cycle

DoDI 5000.75

Current Acquisition Cycle

DoDI 5000.02

ATP = Authority to Proceed

Data Demographics

16

Logistics
34%

Financial
33%

Multiple
22%

HR
11%

Functional Area

Follow-on
67%

New
33%

Program Heritage

NAVY
22%

AIR
FORCE

11%
ARMY
45%

DoD
22%

DoD Component

 Analysis based on 9 deployed ERP programs

Project Characteristics

17

Acquisition Cost & Schedule at FD (BY16 $B)

0 1 2 3 4

< $ 0.5

$ 0.5 - 1

$ 1 - 1.5

$ 1.5 - 2

$ 2 - 2.5

> $ 2.5

No. of Programs

A
cq

u
is

it
io

n
 C

o
st

, B
Y

1
6

 $
B

Acquisition Cost

• Average ERP acquisition costs ~ $0.9 billion, with 70% of the programs ranging between $0.6 B and $1.9 B
• ~60% of the programs experienced critical breach for time (failure to meet Limited Deployment ATP within five years of

Solution Analysis ATP)
 FD = Full Deployment Authority to Proceed (ATP)

• Acquisition cost includes development,
procurement, and fielding costs.

• All programs experienced Acquisition cost

growth from Solution Analysis ATP to Full
Deployment

0 1 2 3 4 5

< 30

30-60

60-90

90-120

120-150

No. of Programs

D
u

ra
ti

o
n

, m
o

n
th

s

Acquisition Schedule

• 80% of programs between 50 and 115
months

• Median Development Duration: 39
months

• Median Deployment Duration: 53 months

18

Technical Requirements at FD

0 1 2 3 4 5

< 300

300 - 600

600 - 900

900 - 1200

1200 - 1500

No. of Programs

R
IC

E
C

o
u

n
t

RICE*

• RICE Counts median: 413 • User median: 26,600

RICE: Reports, Interfaces, Conversions, Extensions
Majority of Deployed ERP systems have fewer than 40,000 Users

0 1 2 3 4 5

< 15K

15K - 30K

30K - 45K

45K - 60K

60K - 90K

…

150K - 180K

No. of Programs

N
u

m
b

e
r

o
f

U
se

rs

Users

Cost Growth

20

Cost Elements
included

ERP Configuration/Customization
Program Management
Systems Engineering
Change Management
Training Development
Development Test & Evaluation

Deployment Software Licenses
Deployment Hardware Procurement

User Training
Site Installation/Activation
Data Conversion
Execution Cut-over
Interim Sustainment
Operational Test & Evaluation

Key Metric: Development Cost Growth Procurement Cost Growth Fielding Cost Growth

Usefulness Use as secondary method to adjust point estimate for cost growth

Use descriptive statistics (as last resort) for defining cost risk/uncertainty bounds

Cost Group

Milestones

Activities

Development

Deployment

ATP1 ATP3 ATP4 ATP5 ATP2

Fielding

Limited
Deployment

Full
Deployment

Solution
Analysis

Functional
Requirements Acquisition

Procurement Development

Cost Growth Overview

21

0%

20%

40%

60%

80%

100%

120%

140%

160%

Solution Analysis Functional
Requirements

Acquisition Limited Deployment

ATP1 ATP2 ATP3 ATP4

139%
(x2.39)

54%
(x1.54) 26%

(x1.26) 2%

A
ve

ra
ge

 D
ev

e
lo

p
m

e
n

t
C

o
st

 G
ro

w
th

Development Cost Growth
(Planned to Actual at each ATP)

• Delays were triggered by ERP software customization, including scope creep and re-work
• Cost growth in ATP1 and ATP2 was primarily driven by schedule delays
• Schedule delays extend the “standing-Army” personnel, up to 50% of total development cost

Descriptive
Statistics

ATP1 ATP2 ATP3 ATP4

Mean (Average) 139% 54% 26% 2%

Std Dev 153% 93% 75% 9%

Min -6% -6% -14% -9%

Max 338% 235% 224% 23%

22

Procurement Cost Growth
(Planned to Actual at each ATP)

Lower procurement cost volatility is attributed to stable user counts and negotiated license fees

0%

20%

40%

60%

80%

100%

120%

140%

160%

Solution Analysis Functional
Requirements

Acquisition Limited Deployment

ATP1 ATP2 ATP3 ATP4

40%
(x1.4) 11%

(x1.11) 4% 4%

A
ve

ra
ge

 P
ro

cu
re

m
e

n
t

C
o

st
 G

ro
w

th
 Descriptive

Statistics
ATP1 ATP2 ATP3 ATP4

Mean (Average) 40% 11% 4% 4%

Std Dev 97% 73% 16% 7%

Min -76% -76% -19% 0%

Max 166% 165% 29% 20%

23

0%

20%

40%

60%

80%

100%

120%

140%

160%

Solution Analysis Functional
Requirements

Acquisition Limited Deployment

ATP1 ATP2 ATP3 ATP4

110%
(x2.11)

51%
(x1.51)

2% 3%

A
ve

ra
ge

 A
cq

u
is

it
io

n
 C

o
st

 G
ro

w
th

Acquisition Cost Growth

(Planned to Actual at each ATP)

 Acquisition Cost includes Development, Procurement and Fielding costs

Descriptive
Statistics

ATP1 ATP2 ATP3 ATP4

Mean (Average) 110% 51% 2% 3%

Std Dev 132% 65% 12% 9%

Min 3% 3% -22% -7%

Max 340% 176% 24% 24%

24

Reasons for Cost Growth

1. Failure to implement Business Process Reengineering (BPR) best
practices: Difficult to change business processes / culture to exploit
ERP strengths.

2. Scope and requirement growth: Inexperience with Oracle/SAP
customization and configuration

3. Optimistic acquisition planning contributed to underestimation of
both effort and duration.

4. Schedule: Limited budgets forced delays and extended fixed staffing
cost; not meeting user expectations generated unanticipated rework.

Schedule Growth

26

Key Schedule
metrics:

Program Length (in months) Program Length (in months)

What does this
measure?

Actual vs Planned Duration (at ATP1 or
ATP2)

Actual vs Planned Duration (at ATP4 or ATP5)

Usefulness

To adjust deployment duration using the schedule growth factors

For defining schedule risk/uncertainty bound

Schedule Growth Overview

Phases

Milestones

Activities

Development Phase

Deployment Phase

ATP1 ATP3 ATP4 ATP5 ATP2

Fielding

Limited
Deployment

Full
Deployment

Solution
Analysis

Functional
Requirements Acquisition

Procurement Development

27

14

38

48

46

28

41

42

44

21

32

33

120

16

38

25

71

28

24

10

74

4

41

2

11

5

14

49

65

23

20

46

77

7

59

12

25

0 20 40 60 80 100 120 140 160

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

Duration, months

DEVELOPMENT DEPLOYMENT

ERP Program Duration at Solution Analysis ATP
(Actual vs Planned Schedule)

 Deployed ERP programs have slipped an average of 47 months from the original schedule, ranging between 9 to 97 months

359% ↑

24% ↑

39% ↑

147% ↑

85% ↑

22% ↑

67% ↑

70% ↑

300% ↑

28

ERP Program Duration at Functional Requirements
ATP (Actual vs Planned Schedule)

 At Functional Requirements ATP, deployed ERP programs experienced an average of 25 months schedule slip.
Schedule slip is lower than at Solution Analysis ATP as scope is better defined/identified.

32

38

48

46

26

41

40

44

21

32

115

120

16

38

52

71

28

24

54

74

20

41

3

11

18

14

49

65

23

20

46

77

13

59

12

25

0 20 40 60 80 100 120 140 160

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

Planned

Actual

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

Duration, months

DEVELOPMENT DEPLOYMENT

29% ↑

27% ↑

76% ↑

0%

1% ↑

39% ↑

85% ↑

100% ↑

22% ↑

29

Reasons for Schedule Growth

1. Premature fielding: Failing to meet user expectations generated unanticipated
rework.

2. Developmental Testing: Significant system deficiencies to fix before fielding.

3. Engineering: Inexperience with Oracle/SAP Configuration and Customization
led to underestimation of delivery timeline. Difficulty changing business
processes to exploit ERP.

4. Quantity: War-fighter needs led some program offices to reassess user and
implementation requirements.

5. Schedule Uncertainty Analysis: Recommended now, but in the past, Program
Office’s optimistic schedule was a ground rule.

Cost Benchmarks

31

Fielding

Cost Factors Overview

Cost Elements Design/ Configuration/Customization
Program Management
Systems Engineering
Change Management
Training Development
Development Test & Evaluation

Deployment Software Licenses
Deployment Hardware Procurement

User Training
Site Installation/Activation
Data Conversion
Execution Cut-over
Interim Sustainment
Operational Test & Evaluation

Key Cost metrics: Development Cost per RICE*
Development Cost per Requirement

Procurement Cost per User Fielding Cost per User

What this measures? Volume of development work units
addressed by a number of either RICE
or requirement

IT Hardware and Software License
Costs addressed by a number of users

Volume of deployment &
fielding work units addressed by
a number of users

Rationale for metric Interfaces and requirements often
available at Solution Analysis ATP
RICE often available at Functional
Requirements ATP

Number of users are available at early
ATP and tends to be stable throughout
life cycle

Number of users are available at
early ATP and tends to be stable
throughout life cycle

Development

ATP1 ATP3

Limited
Deployment

Full
Deployment

ATP4

Activities

Solution
Analysis

Functional
Requirements

ATP5

Acquisition

ATP2

Procurement

Authority to Proceed (ATP) are “milestone-like events” *RICE = reports, interfaces, conversions, and extensions of software objects

32

Development Cost per RICE

Formula:

COSTFD = Actual Development Cost at FD; RICEATP1 = Estimated RICE at ATP1; RICEATP2 = Estimated RICE at ATP2; RICEFD = Actual RICE at FD

𝐶𝑜𝑠𝑡 𝐹𝐷

𝑅𝐼𝐶𝐸 𝐴𝑇𝑃1

𝐶𝑜𝑠𝑡 𝐹𝐷

𝑅𝐼𝐶𝐸 𝐴𝑇𝑃2

𝐶𝑜𝑠𝑡 𝐹𝐷

𝑅𝐼𝐶𝐸 𝐹𝐷

 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =

C
 o

 s
 t

 p
 e
 r

 R
 I C

 E
 (

 $
 K

)

Actuals Functional Requirements
ATP 2

Solution Analysis
ATP1

3000

2500

2000

1500

1000

500

0

1099 1119

1509

Development Cost Factors per RICE 75%

Median

25%

33

Development Cost per Requirement

COSTFD = Actual Development Cost at FD; REQATP1 = Estimated Requirements at ATP1; REQATP2 = Estimated Requirements at APT2; REQFD = Actual Requirements at FD

C
 o

 s
 t
 p

 e
 r
 R

 e
 q

 u
 i r

 e
 m

 e
 n

 t
 (
$

 K
)

Actuals Functional Requirements
ATP2

Solution Analysis
ATP1

1600

1400

1200

1000

800

600

400

200

0

267 292 314

Development Cost Factors per Requirement

Formula: 𝐶𝑜𝑠𝑡 𝐹𝐷

𝑅𝐸𝑄 𝐴𝑇𝑃1

𝐶𝑜𝑠𝑡 𝐹𝐷

𝑅𝐸𝑄 𝐴𝑇𝑃2

𝐶𝑜𝑠𝑡 𝐹𝐷

𝑅𝐸𝑄 𝐹𝐷

 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =

75%

Median

25%

34

Procurement Cost per User

COSTFD = Actual Procurement Cost at FD; USERATP1 = Estimated users at ATP2; USERATP2 = Estimated users at ATP2; USERFD = Actual users at Full Deployment

𝐶𝑜𝑠𝑡 𝐹𝐷

𝑈𝑠𝑒𝑟 𝐴𝑇𝑃1

𝐶𝑜𝑠𝑡 𝐹𝐷

𝑈𝑠𝑒𝑟 𝐴𝑇𝑃2

𝐶𝑜𝑠𝑡 𝐹𝐷

𝑈𝑠𝑒𝑟 𝐹𝐷

C
 o

 s
 t

 p
 e

 r
 U

 s
 e

 r
 ($

 K
)

Actuals Functional Requirements
ATP2

Solution Analysis
ATP1

20

15

10

5

0

3.2

4.8 4.8

Procurement Cost Factors 75%

Median

25%

Formula:

𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =

Schedule Benchmarks

36

Deployment Phase

Development Phase

Fielding

Schedule Factors Overview

Procurement Development Activities

Phases

Key Schedule
metrics:

RICE per Month
Requirements per Month

Users per Month

What this measures? Development phase duration using
number of RICE or requirements

Deployment phase duration based on the number of users

Rationale for metric Interfaces and requirements often
available at Solution Analysis ATP
RICE often available at Functional
requirements ATP

Number of users often available at Solution Analysis ATP
Percent change in user count is very low throughout FD

ATP1 ATP3

Limited
Deployment

Full
Deployment

ATP4

Solution
Analysis

Functional
Requirements

ATP5

Acquisition

ATP2 Events

37

R
 I
 C

 E
 p

 e
 r

 M
 o

 n
 t h

Actuals Functional Requirements
ATP2

Solution Analysis
ATP1

30

25

20

15

10

5

0

8.3
9.2

7

RICE per Development Month

MONTHFD = Actual Development Duration at FD; RICEATP1 = Estimated RICE at ATP1; RICEATP2 = Estimated RICE at ATP2; RICEFD = Actual RICE at Full Deployment

𝑅𝐼𝐶𝐸 𝐴𝑇𝑃1

𝑀𝑜𝑛𝑡ℎ 𝐹𝐷

𝑅𝐼𝐶𝐸 𝐴𝑇𝑃2

(𝑀𝑜𝑛𝑡ℎ)𝐹𝐷

𝑅𝐼𝐶𝐸 𝐹𝐷

𝑀𝑜𝑛𝑡ℎ 𝐹𝐷

75%

Median

25%

RICE per Development Months

Formula:

𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 =

38

Requirements per Development Months

Formula:

MONTHFD = Actual Development Duration at FD; REQATP1 = Estimated requirements at ATP1; REQATP2 = Estimated requirements at ATP2; REQFD = Actual requirements at FD

𝑅𝐸𝑄 𝐴𝑇𝑃1

𝑀𝑜𝑛𝑡ℎ 𝐹𝐷

𝑅𝐸𝑄 𝐴𝑇𝑃2

(𝑀𝑜𝑛𝑡ℎ)𝐹𝐷

𝑅𝐸𝑄 𝐹𝐷

𝑀𝑜𝑛𝑡ℎ 𝐹𝐷

R
 e
 q

 u
 i r

 e
 m

 e
 n

 t s
 p

 e
 r

 M
 o

 n
 t h

Actuals Functional Requirements
ATP2

Solution Analysis
ATP1

250

200

150

100

50

0

25.0 22.7 22.1

Development Schedule Factors 75%

Median

25%

𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 =

39

Users per Deployment Months

MONTHFD = Actual Deployment Duration at FD; USERATP1 = Estimated users at ATP1; USERATP2 = Estimated users at ATP2; USERFD = Actual requirements at FD

75%

Median

25%

Formula:
𝑈𝑆𝐸𝑅 𝐴𝑇𝑃1

𝑀𝑜𝑛𝑡ℎ 𝐹𝐷

𝑈𝑆𝐸𝑅 𝐴𝑇𝑃2

(𝑀𝑜𝑛𝑡ℎ)𝐹𝐷

𝑈𝑆𝐸𝑅 𝐹𝐷

𝑀𝑜𝑛𝑡ℎ 𝐹𝐷

U
 s
 e

 r s
 p

 e
 r

 M
 o

 n
 t h

Actuals Functional Requirements
ATP2

Solution Analysis
ATP1

4000

3000

2000

1000

0

1070

1281 1260

Deployment Schedule Factors

𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 =

Conclusion

41

Primary Findings

• All major deployed ERP programs in DoD experienced cost and
schedule growth from initial estimates
 Actual data suggests cost and duration are always underestimated at

ATP1 and ATP2

• Cost and schedule overruns were each over 100% from
Solution Analysis ATP

• Most ERP programs exceeded five years guideline to limited
deployment from Solution Analysis ATP

• Deployment Schedule overruns were greater than
Development overruns

42

Lessons Learned

• Adjust your point estimate for growth, as all ERP programs
have exceeded original estimates, account for the uncertainty

• Add growth according to the program’s maturity

• Cost factors should be developed using initial size estimates to
minimize estimating error and account for growth

• Cost analysts should add uncertainty to schedule as it is the
primary contributor to cost overruns

Thank you for your attention

QUESTIONS?

Objective SLOC: An Alternative Method to

Sizing Software Development Efforts

Andrew Kicinski

Integrity Applications Incorporated

NRO/Cost and Acquisition Assessment Group (CAAG)

SW and IT-CAST September 2017

NRO/CAAG

Agenda

Software Estimating Today: the ESLOC Method

Need for a New Approach

ESLOC Alternatives – OSLOC (Objective SLOC) and

Parametric Models

Future of Software Estimating

BLUF: A parametric model and an estimate by analogy

approach have been developed to provide a more

objective, simplified and defendable software

development cost estimate

2

NRO/CAAG

How Software Development Effort is Measured

Level of Effort

Function Points

Source Lines of Code (SLOC)

Commercial Models – SEER SEM, COCOMO, SLIM, Price

3

NRO/CAAG

How Software Development Effort is Measured at the

CAAG

Equivalent Source Lines of Code (ESLOC)

Primary method of software (SW) estimating by NRO CAAG

A proxy for effective software development effort

Standardizes new and reuse code to a single effective measure

Assumes effort to reuse SW is less than or equal to new SW development

Derived from commercial standards

where

%𝑅𝑒𝑤𝑜𝑟𝑘 = (.4 ×%𝑅𝐷) + (.25 ×%𝑅𝐼) + (.35 ×%𝑅𝑇)

%𝑅𝐷 = %𝑅𝑒𝑑𝑒𝑠𝑖𝑔𝑛
%𝑅𝐼 = %𝑅𝑒𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

%𝑅𝑇 = %𝑅𝑒𝑡𝑒𝑠𝑡

𝐸𝑆𝐿𝑂𝐶 = 𝑁𝑒𝑤 + .25 × 𝐴𝑢𝑡𝑜𝑔𝑒𝑛 + 𝑈𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 + 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 ×%𝑅𝑒𝑤𝑜𝑟𝑘

4

NRO/CAAG

The CAAG recognizes the weakness of the current ESLOC method

is rooted in the subjective RD/RI/RT inputs

The “ESLOC Alternative Analysis” study was recently implemented

to assess objective alternatives to ESLOC

Goals of this study were:

Evaluate the current ESLOC method

Propose and develop new objective measures for estimating effective SW size

Assess viability and compare performance of objective measures to ESLOC

Recommend path forward for CAAG SW estimating team

ESLOC Alternative Analysis

𝐸𝑆𝐿𝑂𝐶 = 𝑁𝑒𝑤 + .25 × 𝐴𝑢𝑡𝑜𝑔𝑒𝑛 + 𝑈𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 +𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 × .4 ×%𝑅𝐷 + .25 ×%𝑅𝐼 + .35 ×%𝑅𝑇

Subjective

Objective

Partially Subjective

5

NRO/CAAG

ESLOC Advantages

ESLOC allows the scaling of reuse code based on the expected or

observed effort to use the existing software

Higher RD/RI/RT values should accompany more effort to utilize

pre-existing code

Example (perspective of SME populating SW datasheets):

Lower RD/RI/RT

Internal reuse

Non-mission critical SW

Mature reuse baseline

Higher RD/RI/RT

External reuse

Mission critical SW

Low-maturity reuse

ITEM SIZE DATA
COMPL

EXITY
DELIVERED PRE-EXISTING CODE

SOURCE NEW CODE

Logical LANGUAGE UNIQUE
AUTO

GEN

SLOC SLOC SLOC

32,000 C++ 5,000 0 25,000 2,000 3,000 5 1 10 6,553

32,000 C++ 5,000 0 25,000 2,000 3,000 10 7 30 9,365

ESLOC%RT

TOTAL

MODIFIED

SLOC

TOTAL

DELETED

SLOC

TOTAL UN-

MODIFIED

SLOC

%RD %RI

6

NRO/CAAG

ESLOC Disadvantages

Although well intentioned, ESLOC parameters (RD/RI/RT):

Need to be populated by an analyst intimately familiar with the SW

Are often misunderstood, misinterpreted, not populated, or populated

with repeating values (same value for all SW components)

Can have large impact on ESLOC from small changes

Vary widely across programs, contributing to additional uncertainty and

variability in SW productivities

Compound pre-existing code in cases of multiple SW snapshots

Cannot be independently verified – defending changes is difficult

Example (perspective of CAAG analyst verifying SW datasheets):
ITEM SIZE DATA

COMPL

EXITY
DELIVERED PRE-EXISTING CODE

SOURCE NEW CODE

Logical LANGUAGE UNIQUE
AUTO

GEN

SLOC SLOC SLOC

32,000 C++ 5,000 0 25,000 2,000 3,000 5 1 10 6,553

32,000 C++ 5,000 0 25,000 2,000 3,000 10 7 30 9,365

ESLOC%RT

TOTAL

MODIFIED

SLOC

TOTAL

DELETED

SLOC

TOTAL UN-

MODIFIED

SLOC

%RD %RI

7

NRO/CAAG

More than one-third of ESLOC was based

on CAAG-populated RD/RI/RT

Half of the ESLOC resulting from contractor-

populated RD/RI/RT used repeating

RD/RI/RT values (same values for multiple

SW items)

%Rework shows very little correlation to

%New or %Modified

There is significant variation, verifying

low quality of subjective RD/RI/RT

High %New but low %Rework

Low %New but high %Rework

Low %Modified but high %Rework

ESLOC Disadvantages Quantified

We hypothesize ESLOC has many issues. What data backs up this claim?

An all-encompassing NRO ground dataset was compiled and the following

metrics were calculated:

%Rework =
.4 × %𝑅𝐷) + (.25 ×%𝑅𝐼) + (.35 ×%𝑅𝑇

8

NRO/CAAG

ESLOC Alternatives

The evidence is clear: ESLOC needs to be replaced

What are the objective alternatives?

Option 1: Set RD/RI/RT objectively

Option 2: Assert an Objective SLOC (OSLOC) formula

Option 3: Use regression techniques to derive CER-type

method

9

NRO/CAAG

Evaluation of Methods

Standard model quality metrics were used to evaluate different

options, including Standard Percent Error (SPE), correlation (R2),

average bias and error residual trending

Distribution and range of productivities was also considered as a

way to compare methods

ESLOC has a large range of productivities and is highly skewed, due to

variability and uncertainty surrounding RD/RI/RT

Less skew and tighter range of productivities indicates less uncertainty of

inputs

Evaluated standard deviation, skewness and 80th percentile divided by 20th

percentile as characterizations of productivity distribution

10

NRO/CAAG

Option 1: Set RD/RI/RT Objectively

RD/RI/RT vary significantly due to their high subjectivity. If these values could be

assigned objectively, our sizing method would contain less uncertainty

We have observed contractors using formulas to populate RD/RI/RT and have begun

internally populating %RI as %Modified when no better information is available

Option 1a: set RD/RI/RT as the following

ESLOC OSLOC Option 1a
RD RI RT

5%
Modified/

Pre-Existing
10%

*Results on subset of ground data that identify Modified SLOC

Using %Modified as %RI and using SEER standards for %RD and RT does not improve estimating method

80th / 20th 6.09 Bias -2%

Skew 0.43 SPE 76%

Stdev 0.36 R^2 0.28

Hours/ESLOC Distribution Model Statistics

80th / 20th 6.68 Bias 0%

Skew 0.84 SPE 84%

Stdev 0.45 R^2 0.26

Hours/OSLOC Distribution Model Statistics

11

NRO/CAAG

Option 1: Set RD/RI/RT Objectively

Option 1a set RD and RT to SEER SEM standards for reuse. This standard

may not be appropriate for every SW CSCI.

Option 1b: set all of RD/RI/RT to Modified/Pre-Existing, so

𝑂𝑆𝐿𝑂𝐶 = 𝑁𝑒𝑤 + .25 × 𝐴𝑢𝑡𝑜𝑔𝑒𝑛 + (𝑈𝑛𝑚𝑜𝑑 +𝑀𝑜𝑑) ×
𝑀𝑜𝑑

𝑃𝑟𝑒𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔

ESLOC OSLOC Option 1b

*Results on subset of ground data that identify Modified SLOC

Using %Modified as the entire rework percentage provides some improvement over ESLOC

80th / 20th 6.09 Bias -2%

Skew 0.43 SPE 76%

Stdev 0.36 R^2 0.28

Hours/ESLOC Distribution Model Statistics

80th / 20th 4.72 Bias 0%

Skew 0.33 SPE 67%

Stdev 0.36 R^2 0.39

Model StatisticsHours/OSLOC Distribution

12

NRO/CAAG

New + Modified is a simple sizing metric and performs better than ESLOC and similar to Option 1b

Option 2: Assert an OSLOC Formula

Option 1b was 𝑂𝑆𝐿𝑂𝐶 = 𝑁𝑒𝑤 + .25 × 𝐴𝑢𝑡𝑜𝑔𝑒𝑛 + 𝑈𝑛𝑚𝑜𝑑 +𝑀𝑜𝑑 ×
𝑀𝑜𝑑

𝑃𝑟𝑒𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔

If Autogen is small, and not expected to be a large influencer, and since Pre-
Existing = Unmod + Mod – Deleted, if Deleted is small then effectively,

𝑂𝑆𝐿𝑂𝐶 = 𝑁𝑒𝑤 + 𝑈𝑛𝑚𝑜𝑑 +𝑀𝑜𝑑 ×
𝑀𝑜𝑑

𝑈𝑛𝑚𝑜𝑑 +𝑀𝑜𝑑
Option 2a: 𝑂𝑆𝐿𝑂𝐶 = 𝑁𝑒𝑤 +𝑀𝑜𝑑

ESLOC OSLOC Option 2a

*Results on subset of ground data that identify Modified SLOC

80th / 20th 6.09 Bias -2%

Skew 0.43 SPE 76%

Stdev 0.36 R^2 0.28

Hours/ESLOC Distribution Model Statistics

80th / 20th 4.93 Bias 0%

Skew 0.36 SPE 69%

Stdev 0.37 R^2 0.37

Hours/OSLOC Distribution Model Statistics

13

NRO/CAAG

Option 2: Assert an OSLOC Formula

Dataset includes programs of varying levels of confidence

Completed/on-going

UCC/contractor counter/estimate

Normalization/mappings being reassessed

Modified code identified/not identified

Option 2a was run on three datasets

1. Ground programs that identify modified (previous chart)

2. All ground programs
3. Ground programs that identify modified using

UCC and have no significant DQ issues

New + Mod performs similarly on a larger set including low quality data and on a small set of high quality data

80th / 20th 4.17 Bias 0%

Skew 0.32 SPE 62%

Stdev 0.33 R^2 0.26

Hours/OSLOC Distribution Model Statistics

14

80 / 20 4.23 Bias 0%

Skew 0.47 SPE 64%

Stdev 0.32 R^2 0.55

Hours/OSLOC Distribution Model Statistics

NRO/CAAG

Option 2: Assert an OSLOC Formula

Recently we have begun collecting metrics on data SLOC (XML and HTML)

and have been decrementing Data ESLOC in some cases

The effect of data SLOC was tested on New + Modified (Option 2a) on the

UCC data subset by removing all New and Modified data code (Option 2b)

Option 2a Option 2b

Similar results show removing HTML and XML from code counts improves

OSLOC model on set of all NRO ground SW programs

Removing data from OSLOC improve Standard Error and reduces range of OSLOC productivities

80th / 20th 2.42 Bias 0%

Skew 0.43 SPE 51%

Stdev 0.29 R^2 0.33

Hours/OSLOC Distribution Model Statistics

15

80th / 20th 4.17 Bias 0%

Skew 0.32 SPE 62%

Stdev 0.33 R^2 0.26

Hours/OSLOC Distribution Model Statistics

NRO/CAAG

Option 3: Use Regression Techniques to Derive

CER-type Method

Parametric models were run to see if they could outperform a simple New +

Modified OSLOC equation

Due to the skewed distributions of New, Unmodified, Modified and Deleted

SLOC, LOLS on multiplicative forms is the preferred regression method

CER models produce similar regression statistics to OSLOC models

LOLS 7 produced a model suggesting high unmodified SLOC was

associated with less effort (d < 0), inconsistent with expectations

*Results on set of all NRO ground data

16

CER Tab Name CER Function SPE R2

ZMPE ESLOC Base SW Dev Hours = a*ESLOC 66.2% 0.45

LOLS ESLOC Base Exp SW Dev Hours = a * ESLOC^b 69.0% 0.46

ZMPE 1 SW Dev Hours = a*New 147.1% 0.53

ZMPE 2 SW Dev Hours = a*(New+Modified) 63.5% 0.55

LOLS 3 SW Dev Hours = a * New^b 119.2% 0.56

LOLS 4 SW Dev Hours = a * (New+Mod)^b 63.6% 0.55

ZMPE 5 SW Dev Hours = a*New^b + c*Mod^d 63.3% 0.52

LOLS 6 SW Dev Hours = a*New^b * (Mod/New+1)^c 65.4% 0.55

LOLS 7 SW Dev Hours = a*New^b * (Mod/New+1)^c * (Unmod/New+1)^d 65.3% 0.74

NRO/CAAG

Investigating Unexpected CER Behavior

High amounts of unmodified reuse should take some additional effort to

understand, integrate with new code, and retest

What could cause a regression model to produce the opposite conclusion?

LOLS 6: 𝑆𝑊 𝐷𝑒𝑣 𝐻𝑜𝑢𝑟𝑠 = 𝑎 × 𝑁𝑒𝑤𝑏 × 1 +
𝑀𝑜𝑑

𝑁𝑒𝑤

𝑐

Residual plot on LOLS 6 shows adding an unmodified scaling factor does not

improve model based on expectations

SW programs with large amounts of unmodified SLOC are already being over-estimated

It was discovered that six of seven data points that consisted of multiple deliveries

were over-estimated and are contained within the red oval – maybe these

programs are being over-estimated because of how code counts were reported

17

Multiple Differencing Example

Baseline A Baseline B New Unmod Mod Deleted Pre-Existing DSLOC

DLV 1.0 DLV 2.0 100 900 50 50 1,000 1,050

DLV 2.0 DLV 3.0 150 950 75 25 1,050 1,175

250 1,850 125 75

Single Diff DLV 1.0 DLV 3.0 225 850 100 50 1,000 1,175

Sum

Multiple

Diff

Multiple differencing snapshots tend to capture more churn

and have higher SLOC counts than a single diff run

Under-

estimate

Over-

estimate

NRO/CAAG

CER on Subset of Data

Promising CER models were run on the set of ground SW programs that

reported SW sizing based on one differencing run (7 DPs removed)

Standard error and correlation improve significantly

Unmodified now shows expected positive relationship, but provides very

little additional explanatory power

Removing XML and HTML code improves models further

18

CER Tab Name CER Function SPE R2

LOLS 6 SW Dev Hours = a*New^b * (Mod/New+1)^c 65.4% 0.55

LOLS 6 single diff subset SW Dev Hours = a*New^b * (Mod/New+1)^c 57.7% 0.92

ZMPE 6 single diff subset SW Dev Hours = a*New^b * (Mod/New+1)^c 51.7% 0.89

7 data points composed of multiple SW

deliveries have virtually nothing else in

common – different contractors, ground

function, size, etc. – there is no reason

to believe there is another reason

contributing to their previous over-

estimation

CER Tab Name CER Function SPE R2

LOLS 6 single diff w/o data SW Dev Hours = a*New^b * (Mod/New+1)^c 54.2% 0.91

ZMPE 6 single diff w/o data SW Dev Hours = a*New^b * (Mod/New+1)^c 49.0% 0.88

NRO/CAAG

Option 2: OSLOC Formula – on Subset

Removing data points that were composed of multiple SW deliveries

improved the CER models

Can reducing the set to those with one SW differencing summary improve the

results of the OSLOC model?

Recall the best performing OSLOC model was Option 2b:

𝑂𝑆𝐿𝑂𝐶 = 𝑁𝑒𝑤 +𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑒𝑥𝑐𝑙. 𝑋𝑀𝐿,𝐻𝑇𝑀𝐿

Option 2b on all NRO ground Option 2b on subset

19

OSLOC Model improves when removing programs with multiple diffs, but does underestimate larger programs

80 / 20 3.34 Bias 0%

Skew 0.54 SPE 61%

Stdev 0.32 R^2 0.60

Hours/OSLOC Distribution Model Statistics

80 / 20 3.31 Bias 0%

Skew 0.27 SPE 55%

Stdev 0.33 R^2 0.88

Model StatisticsHours/OSLOC Distribution

NRO/CAAG

Recommended Models

Model Attribute OSLOC 2b CER 6

1
Data collection going forward will be completely

objective through the use of UCC-G
X X

2 Simple to understand and implement X X

3
Reduces burden to contractor and improves CAAG

ability to defend estimates
X X

4
Performs significantly better when all data is based

on a single SW differencing summary
X X

5
Estimate by analogy (choose analogous program

SW productivity)
X

6 Estimate by parametric model (no analogy needed) X

20

Best OSLOC and parametric model perform similarly and share many of the same desirable characteristics

OSLOC 2b: 𝑂𝑆𝐿𝑂𝐶 = 𝑁𝑒𝑤 +𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑒𝑥𝑐𝑙. 𝑋𝑀𝐿,𝐻𝑇𝑀𝐿

CER 6: 𝑆𝑊 𝐷𝑒𝑣 𝐻𝑟𝑠 = 𝑎 ∗ 𝑁𝑒𝑤𝑏 ∗ 1 +
𝑀𝑜𝑑

𝑁𝑒𝑤

𝑐

NRO/CAAG

Future of SW Estimating at CAAG

CAAG to begin a parallel path approach to SW sizing and estimating

OSLOC metrics will be calculated and collected for all historic programs and future collections

Future estimates will investigate applying OSLOC method and parametric model as

alternative methods of estimating and as cross checks

ESLOC metrics will be maintained and ESLOC inputs will continue to be collected to allow the

analyst the option of reverting to estimate by ESLOC analogy should OSLOC and the

parametric model not meet their needs

Good practices that will be sought after to improve objective SW estimating

Recommend calculating SW differencing counts between the initial and current SW baselines

CAAG should ensure contractors always run UCC-G and run it correctly

Ensure documentation of software functionality exists to complement software sizing

While OSLOC is still in “beta testing” we hope to see improvements in our

ability to objectively estimate software development. Results and

implementation will be reviewed and shared in the future

21

NRO/CAAG

Questions?

22

NRO/CAAG

Thank you!

Andrew Kicinski

kicinski@nro.mil

akicinski@integrity-apps.com

571-304-8867

23

NRO/CAAG

The ESLOC Method

The CAAG has historically used the ESLOC method to estimate SW development

Equivalent Source Lines of Code (ESLOC) is a standardizing measure

1 new line of code = 1 ESLOC

1 autogenerated line of code = .25 ESLOC

1 unmodified or modified line of code ≤ 1 ESLOC

Reuse is scaled based on an assessment of the percent redesign, reimplementation and retest

(RD/RI/RT)

How the ESLOC method applies to our processes:

Data collection process:

1. 2. 3. 4.

Point estimate process:

1. 2. 3. 4.

Contractor runs

UCC to collect

objective sizing

Contractor

assesses rework

effort and provides

RD/RI/RT

CAAG normalizes

raw data including

mapping hours/costs

to SW Dev

SW Metrics are

produced

(Hours/ESLOC)

Contractor populates

SW Datasheet

including SW sizing

and RD/RI/RT

SW sizing and RD/RI/RT are

assessed for reasonability

and adjusted as necessary,

producing ESLOC

Analogous program SW

productivities and labor

rates are pulled as

assumptions

𝐸𝑆𝐿𝑂𝐶 ×
𝐻𝑜𝑢𝑟𝑠

𝐸𝑆𝐿𝑂𝐶
×

$𝐵𝑌

𝐻𝑜𝑢𝑟
= 𝑃𝑜𝑖𝑛𝑡 𝐸𝑠𝑡

𝐸𝑆𝐿𝑂𝐶 = 𝑁𝑒𝑤 + .25 × 𝐴𝑢𝑡𝑜𝑔𝑒𝑛 + 𝑈𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 +𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 × .4 ×%𝑅𝐷 + .25 ×%𝑅𝐼 + .35 ×%𝑅𝑇

25

NRO/CAAG

Evaluation of Methods

Typically in model development, parametric models, such as CERs, can be

evaluated by comparing actual costs to predicted costs by utilizing the

proposed model and assessing SPE, R2, bias, residual trending, etc.
This approach was taken for Option 3 (use regression techniques to derive CER-type

method)

Assessing Options 1 (set RD/RI/RT objectively), 2 (assert OSLOC formula)

and the current ESLOC method are more difficult
In practice these methods involve estimating by analogy

During methods development it is difficult to apply an analogous productivity to make the

actual to predicted hours comparison

For our assessments, it was assumed that the average data set productivity would be the

applied analogy to derive predicted hours

Distribution and range of productivities were also considered as ways to

compare methods
ESLOC has a large range of productivities and is highly skewed, due to variability and

uncertainty surrounding RD/RI/RT

Less skew and tighter range of productivities indicates less uncertainty of inputs

Evaluated standard deviation, skewness and 80th percentile divided by 20th percentile as

characterizations of productivity distribution

26

NRO/CAAG

CAAG SW Datasheet

End Item Software Datasheet 1
Preparer: Baseline A:

Secure Phone: Baseline B:
Email: Baseline A Date:

Company: Baseline B Date:

Date:

Site:

Instructions:

ITEM SIZE DATA
C

O
DELIVERED PRE-EXISTING CODE MONTH PERCENT SUBCONTRACT

Contractor SOURCE NEW CODE SDR TO SOURCE

WBS Item CSCI Logical LANGUAGE UNIQUE
AUTO

GEN
CSCI OF 1ST 2ND

NO. ID Description SLOC SLOC SLOC TEST S/W CONTR TIER CONTR TIER CONTR

0 0

ESLO

C
%RT

TOTAL

MODIFIED

SLOC

TOTAL

DELETED

SLOC

TOTAL UN-

MODIFIED

SLOC

%RD %RI

See Notes at the bottom of each page for explanation of columnar headings.

Use the tool on sheet 2.a2 RD RI RT Calculation Tool in to aid in the determination of these very important reuse factors.

Identify Baselines A and B that were run through the UCC differencing function to populate this Datasheet. Identify the dates of most recent update to the baselines.

Use logical code for all SLOC counts.

Links are provided for CA rankings at the top of each column

Use a separate line for each CSCI. If more than one language is used within the CSCI, use a different line for each language.

Use UCC Tool values only, not contractor code counts.

Use a new End Item SW Datasheet 1-3 for additional differencing results for other baselines.

27

NRO/CAAG

RD/RI/RT Calculation Tool

Tool provided in CAAG datasheet package to assist in RD/RI/RT population

28

NRO/CAAG

Definitions

Average Bias:

Pearson R2: Pearson product-moment correlation squared

(between actual and estimated costs), which is the percentage of

variation in actual costs that is explained by the CER.

SPE: Standard Percent Error. For n data points and m estimated

coefficients,

29

University of Southern California

Center for Systems and Software Engineering

Software Cost Estimation Meets

Software Diversity

Barry Boehm, USC

Software and IT- CAST Meeting

August 22, 2017

University of Southern California

Center for Systems and Software Engineering

Outline

• Sources of Software Diversity

– A Short History of Software Estimation Accuracy

– Process, Product, Property, and People Drivers

• Options for Software Cost Estimation

– Expert Judgement/Consensus; Size-Based; Productivity-

Based; Component-Based; Process-Based; Composites

• Best Fits of Estimation-Types to Diversity-Types

– Extensions of ICSM Common Cases

• Charting Your Path to Improved Estimates

10/19/2016 2 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

10/19/2016 3

A Short History of Software Estimation Accuracy

Unprece-

dented
Prece-

dented

Component-

based
COTS Agile

SoS. Apps, Widgets, IDPD,

Clouds, Security, MBSSE

A B C D

Relative

Productivity

Estimation

Error

Time, Domain Understanding

IDPD: Incremental Development Productivity Decline

MBSSE: Model-Based Systems and Sw Engr.

COTS: Commercial Off-the-Shelf

SoS: Systems of Systems

Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

COQUALMO

1998

COCOMO 81

1981

COPROMO

1998

COSoSIMO

2007

Legend:

Model has been calibrated with historical project data and expert (Delphi) data

Model is derived from COCOMO II

Model has been calibrated with expert (Delphi) data

COCOTS

2000

COSYSMO

2005

CORADMO

1999,2012

iDAVE

2004
COPLIMO

2003

COPSEMO

1998

COCOMO II

2000

DBA COCOMO

2004

COINCOMO

2004,2012

COSECMO

 2004

Software Cost Models

Software Extensions

Other Independent

Estimation Models

Dates indicate the time that the first paper was published for the model

COTIPMO

2011

AGILE C II

2003

COCOMO Family of Cost Models

10/19/2016 4 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Future Software Process Diversity

• Sequential Phases

– Waterfall, V-Model

• Sequential Increments

– Most agile methods: XP, Scrum, Crystal , SAFE

– Pre-Planned Product Improvement (P3I)

• Continuous reprioritization

– Kanban, DevOps

• Evolutionary Definition and Development

– Incremental Commitment Spiral, Rational Unified Process

• Fully concurrent: Open Source

10/19/2016 5 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

April 2014

ICSM Software Strategy Examples

Accounting Application
Size/Complexity: Small/low

Typical Change Rate/Month: Low

Criticality: High

NDI Support: NDI-driven architecture

Organizational Personnel Capability: NDI-

experienced, medium to high

Software Strategy: COTS

Simple Customer Business App
Size/Complexity: Small/low

Typical Change Rate/Month: Medium to high

Criticality: Medium

NDI Support: No COTS, development and target

environment well-defined

Organizational Personnel Capability: Agile-

ready, domain experience high

Software Strategy: Architected agile

Cellphone Feature
Size/Complexity: Medium/medium

Typical Change Rate/Month: Medium to high

Criticality: Low

NDI Support: No COTS, development and

target environment well-defined

Organizational Personnel Capability: Agile-

ready, domain experience high

Software Strategy: Agile

 Security Kernel
Size/Complexity: Small/low

Typical Change Rate/Month: Low

Criticality: Extra high

NDI Support: No COTS, development and target

environment well-defined

Organizational Personnel Capability: Strong

formal methods experience

Software Strategy: Formal methods

6 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Incremental Development Productivity Decline (IDPD)

• Example: Site Defense BMD Software

– 5 builds, 7 years, $100M; operational and support software

– Build 1 productivity over 300 LOC/person month

– Build 5 productivity under 150 LOC/PM

• Including Build 1-4 breakage, integration, rework

• 318% change in requirements across all builds

• IDPD factor = 20% productivity decrease per build

– Similar trends in later unprecedented systems

– Not unique to DoD: key source of Windows Vista delays

• Maintenance of full non-COTS SLOC, not ESLOC

– Build 1: 200 KSLOC new; 200K reused@20% = 240K ESLOC

– Build 2: 400 KSLOC of Build 1 software to maintain, integrate

10/19/2016 7 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Effects of IDPD on Number of Increments

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8

Build

Cumulative

 KSLOC
0% productivity decline
10% productivity decline
15% productivity decline
20% productivity decline

• Model relating productivity decline to

number of builds needed to reach 8M

SLOC Full Operational Capability

• Assumes Build 1 production of 2M SLOC

@ 100 SLOC/PM

– 20000 PM/ 24 mo. = 833 developers

– Constant staff size for all builds

• Analysis varies the productivity decline

per build

– Extremely important to determine the

incremental development

productivity decline (IDPD) factor per

build

2M

8M

SLOC

10/19/2016 8 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Future Software Product Diversity

• Developed, Reused, Generated Software

– Source Lines of Code (SLOC), Function Points (FP)

– Reused: Equivalent SLOC

– Generated: Model Directives

• Product Line Definition and Development

– Reused, Modified, Generated SLOC or FP

• Non-Developmental Items (NDI), Cloud Services

– NDI: Commercial Off-the-Shelf (COTS), Open Source

– Costing: Assessment, Tailoring, Glue Code, New-Release

Adaptation

• Domain Languages: Business, Supply Chain, Space

• Datasource-Driven: Selection Criteria

10/19/2016 9 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

10/19/2016 Copyright © USC-CSSE 10

Reuse at HP’s Queensferry

Telecommunication Division

0

10

20

30

40

50

60

70

86 87 88 89 90 91 92

Year

Time

to

Market

(months)

Non-reuse Project

Reuse project

University of Southern California

Center for Systems and Software Engineering

Multi-Mission Support Systems Costing
• Product Line Engineering

– Identify multi-mission commonalities and variabilities

– Identify fully, partially sharable commonalities

– Develop plug-compatible interfaces for variabilities

• Product Line Costing (COPLIMO) Parameters

– Fractions of system fully reusable, partially reusable and

cost of developing them for reuse

– Fraction of system variabilities and cost of development

– System lifetime and rates of change

• Product Line Life Cycle Challenges

– Layered services vs. functional hierarchy

– Modularization around sources of change

– Version control, COTS refresh, and change prioritization

– Balancing agilty, assurance, and affordability

10/19/2016 11 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

10/19/2016 Copyright © USC-CSSE 12

The Basic COPLIMO Model
- Constructive Product Line Investment Model

• Based on COCOMO II software cost model

– Statistically calibrated to 161 projects, representing 18

diverse organizations

• Based on standard software reuse economic terms

– RCR: Relative cost of reuse

– RCWR: Relative cost of writing for reuse

• Avoids overestimation

– Avoids RCWR for non-reused components

• Provides experience-based default parameter values

• Simple Excel spreadsheet model

– Easy to modify, extend, interoperate

University of Southern California

Center for Systems and Software Engineering

10/19/2016 Copyright © USC-CSSE 13

Basic COPLIMO Output Summary

Summary of Inputs: 7 year Product Line Effort Savings:

AVPROD 300

AVSIZE 50000 (SLOC)

UNIQ% 40 (%)

ADAP% 30 (%)

RUSE% 30 (%)

RCR-UNIQ 100 (%)

RCR-ADAP 40 (%)

RCR-RUSE 5 (%)

RCWR 1.7

(Note: Do not change above values!)

(Change from "Input" sheet.)

Table of Results:

of Products 0 1 2 3 4 5 6 7

Unique SLOC 0 20000 40000 60000 80000 100000 120000 140000

Adapted SLOC 0 15000 30000 45000 60000 75000 90000 105000

Reused SLOC 0 15000 30000 45000 60000 75000 90000 105000

Total Non-PL SLOC 0 50000 100000 150000 200000 250000 300000 350000

Non-PL Effort (PM) 0 166.667 333.333 500 666.667 833.333 1000 1166.667

1-Product Equiv. SLOC 0 71000 26750 26750 26750 26750 26750 26750

1-Product Equiv. Effort 0 236.667 89.1667 89.1667 89.1667 89.1667 89.1667 89.16667

Cum. Equiv. PL SLOC 0 71000 97750 124500 151250 178000 204750 231500

Cum. PL Effort 0 236.667 325.833 415 504.167 593.333 682.5 771.6667

PL Effort Savings 0 -70 7.5 85 162.5 240 317.5 395

PL Reuse Investment 0 70

Return on Investment N/A -1 0.10714 1.21429 2.32143 3.42857 4.53571 5.642857

Product Line Development Cost Estimation

-100

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8

of products in product line

N
e
t

d
e
v
e
lo

p
m

e
n

t

e
ff

o
rt

 s
a
v
in

g
s

University of Southern California

Center for Systems and Software Engineering

10/19/2016 14

Persistence of Legacy Systems
• Before establishing new-system increments

– Determine how to undo legacy system

1939’s Science Fiction World of 2000 Actual World of 2000

Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

10/19/2016

Failed Greenfield Corporate

Financial System

• Used waterfall approach

– Gathered requirements

– Chose best-fit ERP system

– Provided remaining enhancements

• Needed to ensure continuity of service

– Planned incremental phase-in of new services

• Failed due to inability to selectively phase out

legacy services

– Dropped after 2 failed tries at cost of $40M

15 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

10/19/2016

Budgeting

Legacy Systems Patched, Highly Coupled

Financial and Non-Financial Services

Legacy Business Services

Contract Services

Project Services

Deliverables

Management
Billing

Staffing

Work Breakdown Structure

Subcontracting

Scheduling

Progress Tracking

Change Tracking

Reqs, Configuration Management

Earned Value Management

16 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

10/19/2016

Legacy Business Services

Contract Services Project Services

Result of Legacy Re-engineering

Contract

Financial

Services

•Billing

•Subcontract

payments

•...

Contract Non-

Financial

Services

•Deliverables

mgmt.

•Terms

compliance

•...

General

Financial

Services

•Accounting

•Budgeting

•Earned

value

•Payroll

•...

General Non-

Financial

Services

•Progress

tracking

•Change

tracking

•...

Project

Financial

Services

•WBS

•Expenditure

categories

•...

Project Non-

Financial

Services

•Scheduling

•Staffing

•Reqs CM

•...

17 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Future Software Properties Diversity

• Dependability

– Reliability, Availability, Safety, Security

• Changeability

– Adaptability, Maintainability, Modifiability, Repairability

• Mission Effectiveness

– Response Time, Throughput, Accuracy, Usability, Scalability,

Interoperability

• Life Cycle Efficiency (Cost-Effectiveness)

– Development and Maintenance Cost, Schedule; Reusability

10/19/2016 18 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

10/19/2016 Copyright © USC-CSSE 19

$100M

$50M

Required

Architecture:

Custom; many

cache processors

Original

Architecture:

Modified

Client-Server

1 2 3 4 5

Response Time (sec)

Original Spec After Prototyping

Original Cost

Response Time Rqt. Impact on Cost

University of Southern California

Center for Systems and Software Engineering

Future Software People Diversity

• Desired Software People Capabilities

– Software System Analysis

– Software System Development

– Application Domain Experience

– Software Languages and Tools Experience

– Software Process Maturity

– Team Cohesion

– Low Personnel Turnover

– Familiarity with Apps, Widgets, Social Media, Data

Analytics, Multimedia, Virtual Reality

10/19/2016 20 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Outline

• Sources of Software Diversity

– A Short History of Software Estimation Accuracy

– Process, Product, Property, and People Drivers

• Options for Software Cost Estimation

– Expert Judgement/Consensus; Size-Based; Productivity-

Based; Component-Based; Process-Based; Composites

• Best Fits of Estimation-Types to Diversity-Types

– Extensions of ICSM Common Cases

• Charting Your Path to Improved Estimates

10/19/2016 21 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Estimation-Type Options

• Expert-Judgement; Stakeholder Consensus

– Planning Poker, Wideband Delphi, Bottom-Up

• Analogy: Previous Projects; Yesterday’s Weather

– Agile COCOMO II, Case-Based Reasoning, Causal Modeling

• Parametric Models

– COCOMO/COSTAR, Knowledge Plan, SEER, SLIM, True-S

• Resource-Limited

– Cost or Schedule as Independent Variable (CAIV, SAIV)

• Reuse-Driven: Equivalent Size

– Adjusted for %Design,Code,Test Modified, Understandability

• Product Line

– % Development for Reuse; % Development with Reuse
10/19/2016 Copyright © USC-CSSE 22

University of Southern California

Center for Systems and Software Engineering

Outline

• Sources of Software Diversity

– A Short History of Software Estimation Accuracy

– Process, Product, Property, and People Drivers

• Options for Software Cost Estimation

– Expert Judgement/Consensus; Size-Based; Productivity-

Based; Component-Based; Process-Based; Composites

• Best Fits of Estimation-Types to Diversity-Types

– Extensions of ICSM Common Cases

• Charting Your Path to Improved Estimates

10/19/2016 23 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Best Fits of Estimation-Types to Diversity-Types

 • Pure Agile: Planning Poker, Agile COCOMO II

• Architected Agile
– COSYSMO for architecting; Planning Poker, CAIV-SAIV for sprints,

releases; IDPD for large systems

• Formal Methods: $/SLOC by Evaluated Assurance Level

• NDI/Services-Intensive: Oracle, SAP, other ERP
– RICE Objects: (R)eports, (I)nterfaces, (C)onversions, (E)nhancements

– COCOTS, Value-Added Function Points, Agile for portions

• Hybrid Agile/Plan-Driven

– Expert Delphi, Parametric Models, Agile for portions; IDPD

• Systems of Systems

– COSYSMO for Integrator; Hybrid Agile/Plan-Driven for component systems

• Family of Systems: COPLIMO

• Brownfield: Experiment for refactoring; above for rebuilding

10/19/2016 Copyright © USC-CSSE 24

University of Southern California

Center for Systems and Software Engineering

Proliferation of Estimation Types
Thanks to Capers Jones

• Source Lines of Code (SLOC)

– Physical/Logical; Executable/nonexecutable; New/reused;

Programmmed/generated/translated; Added/modified/deleted

• Function points (FP)

– Original IBM; IFPUG 2,3,4; Fast; COSMIC; Mark II, FISMA,

NESMA; Unadjusted/adjusted; RICE Objects

• SLOC/FP backfire ratios

– SPR, QSM, DAVIDS, Gartner Group

• Agile sizing

– Story points (Planning Poker, T-shirt size); ideal person-weeks

• Risky: high variability

– Number of requirements/shalls; nonfunctional requirements

(SNAP points); UML diagram counts
10/19/2016 Copyright © USC-CSSE 25

University of Southern California

Center for Systems and Software Engineering

Outline

• Sources of Software Diversity

– A Short History of Software Estimation Accuracy

– Process, Product, Property, and People Drivers

• Options for Software Cost Estimation

– Expert Judgement/Consensus; Size-Based; Productivity-

Based; Component-Based; Process-Based; Composites

• Best Fits of Estimation-Types to Diversity-Types

– Extensions of ICSM Common Cases

• Charting Your Path to Improved Estimates

10/19/2016 26 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Charting Your Path to Improved Estimates

• Identify your most critical future improvement areas

• Identify, experiment with best candidate estimation

methods in most critical areas

• Experiment with available methods for others;

evaluate further improvement needs

• Build up, analyze experience base, use to steer path

10/19/2016 Copyright © USC-CSSE 27

University of Southern California

Center for Systems and Software Engineering

28

COCOMO II Experience Factory: IV

Ok?

Rescope

COCOMO 2.0

Recalibrate

COCOMO 2.0

Corporate parameters:

tools, processes, reuse

System objectives:

fcn’y, perf., quality

Execute

project

to next

Milestone

Ok?

Done?

End

Revise

Milestones,

Plans,

Resources

Evaluate

Corporate

SW

Improvement

Strategies

Accumulate

COCOMO 2.0

calibration

data

No

Revised

Expectations

M/S

Results

Yes

Yes

Milestone

expectations

Improved

Corporate

Parameters

N

o

Yes

Cost,

Sched,

Risks

Cost, Sched,

Quality

drivers

No

Milestone plans,

resources

10/19/2016 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Backup Charts

10/19/2016 Copyright © USC-CSSE 29

University of Southern California

Center for Systems and Software Engineering

10/19/2016

Determine Model

Needs

Step 1

USC-CSSE Modeling Methodology

Analyze existing

literature

Step 2

Perform Behavioral

analyses

Step 3
Define relative

significance,data,

ratings

Step 4

Perform expert-

judgment Delphi

assessment,

formulate a priori

model

Step 5

Gather project

data

Step 6

Determine

Bayesian A-

Posteriori model

Step 7 Gather more data;

refine model

Step 8

 - concurrency and feedback implied

30 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

10/19/2016 Copyright © USC-CSSE 31

Step 6: Gather, Analyze Project Data

• Best to pilot data collection with early adopters
– Identifies data definition ambiguities

– Identifies data availability problems

– Identifies need for data conditioning

• Best to collect initial data via interviews
– Avoids misinterpretations

• Endpoint milestones; activities included/excluded;
size definitions

– Uncovers hidden assumptions

• Schedule vs. cost minimization; overtime effort
reported

University of Southern California

Center for Systems and Software Engineering

10/19/2016 Copyright © USC-CSSE 32

Initial Data Analysis May Require Model Revision

• Initial COCOTS model adapted from COCOMO II,

with different parameters

– Effort = A* (Size)B* (Effort Multipliers)

• Amount of COTS integration glue code used for

Size

• Data analysis showed some projects with no glue

code, much effort

– Effort devoted to COTS assessment, tailoring

University of Southern California

Center for Systems and Software Engineering

10/19/2016 Copyright © USC-CSSE 33

COCOTS Effort Distribution: 20 Projects

Mean % of Total COTS Effort by Activity (+/- 1 SD)

49.07% 50.99%

61.25%

20.27% 20.75% 21.76%

31.06%

11.31%

-7.57% -7.48%

0.88% 2.35%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

assessment tailoring glue code system volatility

%
 P

e
rs

o
n

-m
o

n
th

s

University of Southern California

Center for Systems and Software Engineering

10/19/2016 Copyright © USC-CSSE 34

Revised COCOTS Model

• COCOMO-like model for glue code effort

• Unit cost approach for COTS assessment effort
– Number of COTS products to assess

– Number of attributes to assess, weighted by complexity

• Activity-based approach for COTS tailoring effort
– COTS parameters setting, script writing, reports layout,

GUI tailoring, protocol definitions

University of Southern California

Center for Systems and Software Engineering

10/19/2016 Copyright © USC-CSSE 35

New Glue Code Submodel Results

• New calibration results
– Excluding projects with very large, very small amounts of

glue code

• [0.5 - 100 KLOC]: Pred (.30) = 9/17 = 53%

• [2 - 100 KLOC]: Pred (.30) = 8/13 = 62%

– Previous calibration results:

• [0.1 - 390 KLOC]: Pred (.30) = 4/13 = 31%

• Pred(.30) = percent of projects with estimates

within 30% of actuals

University of Southern California

Center for Systems and Software Engineering

36

COCOMO II Experience Factory: I

Ok?

Rescope

COCOMO 2.0

Corporate parameters:

tools, processes, reuse

System objectives:

fcn’y, perf., quality

N

o

Yes

Cost,

Sched,

Risks

10/19/2016 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

37

COCOMO II Experience Factory: II

Ok?

Rescope

COCOMO 2.0

Corporate parameters:

tools, processes, reuse

System objectives:

fcn’y, perf., quality

Execute

project

to next

Milestone

Ok?

Done?

End

Revise

Milestones,

Plans,

Resources

No

Revised

Expectations

M/S

Results

Yes

Yes

Milestone

expectations

N

o

Yes

Cost,

Sched,

Risks

No

Milestone plans,

resources

10/19/2016 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

38

COCOMO II Experience Factory: III

Ok?

Rescope

COCOMO 2.0

Recalibrate

COCOMO 2.0

Corporate parameters:

tools, processes, reuse

System objectives:

fcn’y, perf., quality

Execute

project

to next

Milestone

Ok?

Done?

End

Revise

Milestones,

Plans,

Resources

Accumulate

COCOMO 2.0

calibration

data

No

Revised

Expectations

M/S

Results

Yes

Yes

Milestone

expectations

N

o

Yes

Cost,

Sched,

Risks

No

Milestone plans,

resources

10/19/2016 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

10/19/2016

Better, Cheaper, Faster: Pick Any Two
COCOMO II Model Results

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50

Development Time (Months)

C
o

s
t

($
M

)

(VL, 1)

(L, 10)

(N, 300)

(H, 10K)

(VH, 300K)

-- Cost/Schedule/RELY:

 “pick any two” points

(RELY, MTBF (hours))

•For 100-KSLOC set of features

•Can “pick all three” with 77-KSLOC set of features

39 Copyright © USC-CSSE

1

Deriving Software Sustainment

Cost Estimating Relationships in a

Diverse Army Execution Environment

UNCLASSIFIED

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

IT CAST

23 August 2017

UNCLASSIFIED

2

SWM Initiative Objective and Strategy

Accurately estimate Army system software maintenance

costs to:

- Effectively project and justify software and system life cycle costs

- Objectively evaluate Army system software maintenance execution

costs

- Inform and optimize the allocation of available maintenance

resources across the Army

Effective software maintenance cost estimation is the basis for Army

system software life cycle cost management

Collect and evaluate SWM cost
and technical data for all Army
operational systems (Phase I

and Phase II data call)

Generate and validate cost
estimating relationships from

Phase I and Phase II data
collection

Implement systemic Army SWM
data collection via the SRDR-M.
Populate cost and technical data

repository

Improve Army SWM policy,
business, and technical

requirements

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

3

Phase I

Data Collection and Evaluation

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

4

For this effort, software maintenance is defined as:

• Software maintenance includes all software change activities and products

associated with modifying a software system after EMD has completed and a

software release has been provided to an external party

• The release is the primary SWM change product - a composite of one or more

changes - it can be either a formal release or an engineering release

• SWM includes software enhancements and software corrections/adaptations

• SWM includes activities and change products funded by multiple funding

sources

• Fixed and Variable costs accrued at both the system and organizational levels

by both organic and contractor resources

• Software maintenance and software sustainment are considered to be

synonymous

Army Software Maintenance Definition

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

5

Software Maintenance

1.0 Software Change

Product

Change Requirements

Change Development

B/L Integration & Test

IV&V

On-Site Technical

 Assistance

Problem Troubleshooting

S/W Installation

Operational Assistance

On-Site Training

Operations

Organization Management

Personnel Management

Financial Management

Information Management

Process Management

Change Management

3.0 Software

Licenses

4.0 Certification &

Accreditation

8.0 Operational

Management

7.0 Field

Software Eng.

Version 4.4d

5.0 System

Facilities

6.0 Sustaining

Engineering

Non-System Specific

2.0 Project

Management

Planning

Execution Management

Configuration Management

Resource & Team Management

Contracting Management

Measurement - Reporting

System Specific

System Specific System/Non-System Specific

System Specific System Specific

System/Non-System Specific System Specific

Army Software Maintenance WBS

License Management

License - Right to Use

License - Maintenance
 COTS

 NDI

 Other

Security

Safety

Networthiness

Airworthiness

Hardware
 Software Development

 Assets/Workstations

 System Integration & Test Facilities

 Test Equipment - Tools

Facility Operations

Engineering Support

 Test Support

 Software Delivery

 Technical Studies

User Support

 Help Desk

 Training

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

6

Phase I Data Requirements

System Context

• System description

• Organizations involved

• Maintenance process

• CMMI rating

• Number of software
baselines

• Number of hardware
platforms/number of users

• Analogous systems

Program Level

• Annual effort/cost data
(total annual plus WBS
elements #2 through #8)
broken out by government
and contractor (3 years of
data)

• Labor rates

• Hourly basis for FTEs

• Software licenses

Release Level

• Release context information

• Application domain

• Operating environment

• Release effort / cost

• Schedule - start and end
dates

• Size data (those that apply)
• Software requirements

• External requirements

• Source Lines of Code (SLOC)

• Non-SLOC based size (e.g.
RICE-FW, use cases, story
points)

• Software changes counts by
priority (e.g. change requests,
problem reports, defects)

• IAVAs

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

7

Phase I Data Collection Process

PEOs/SECs/SEDs
identified 5 programs per
organization for Phase I

data collection

(56 programs)

DASA-CE met with
program/system

representative to explain
data collection

questionnaire and clarify
requirements

System representative
completed and submitted

initial draft of
questionnaire

DASA-CE team reviewed
questionnaire, identified
questions, and met with

representative to discuss
context and issues

System representative
updated questionnaire
based on DASA-CE

findings

DASA-CE reviewed
submission and

continued to rework with
system representative as

necessary

Final data submission
was accepted and

evaluated for availability,
integrity, and usability

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

8

Software Maintenance Data Evaluation

• Completeness of required data set

• Underlying SWM business and technical processes are well enough defined

to produce objective data on a periodic and/or event driven basis

• IT systems and tools exist to enable systematic and timely data collection

• Data are derivatives of actual SWM technical and management processes

• All data (measures) are explicitly defined - measurement contexts are known

• Cost data is directly correlated with the WBS defined output products and activities

• Data is consistent - methods exist to address system conflicts (normalization)

• Data is aligned with stakeholder decision information needs

• Data can be objectively characterized and interpreted

• Mapping and aggregation structures and methods exist to combine data

• Potential emerging information requirements have been considered

Availability

Integrity

Usability

SWM Data
Evaluation

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

9

Detailed Data Evaluation

PEO SEC System Release

CER

Usability

SER

Usability

Size:

Requirements

Size:

External

Interfaces Size: SLOC

Size: Non-

SLOC

Size: SW

Changes IAVAs

Effort

(WBS-1)

Schedule

(WBS-1&2)

(PEO 4) SEC 3 System 1 Release 1 Y Y G G G N/A G G Y G

(PEO 4) SEC 3 System 1 Release 2 Y Y G G G N/A G G Y G

(PEO 4) SEC 3 System 2 Release 1 G G R R Y N/A G G G G

(PEO 4) SEC 3 System 3 Release 1 G G G N/A G N/A G N/A G R

(PEO 4) SEC 3 System 4 Release 1 G R R N/A G N/A G N/A G R

(PEO 4) SEC 3 System 4 Release 2 G R R N/A G N/A G N/A G R

(PEO 1) SEC 2 System 5 Release 1 Y R R R G R G N/A Y R

PEO 1 (SEC 2) System 5 Release 2 G G R R G N/A R R G G

PEO 1 (SEC 2) System 5 Release 3 G G R R G N/A R R G G

PEO 1 (SEC 2) System 5 Release 4 G G R R G N/A R R G G

PEO 1 (SEC 2) System 5 Release 5 G G R R G N/A R R G G

PEO 1 (SEC 2) System 5 Release 6 G G R R G N/A R R G G

PEO 1 (SEC 2) System 6 Release 1 R R G G Y N/A G R R G

PEO 1 (SEC 2) System 6 Release 2 R R G G Y N/A G R R G

PEO 1 (SEC 2) System 6 Release 3 R R G G Y N/A Y R R G

PEO 1 (SEC 2) System 7 Release 1 R R G Y G N/A G R O R

PEO 1 (SEC 2) System 7 Release 2 R R G Y G N/A G R O R

PEO 1 (SEC 2) System 8 Release 1 G G G G G N/A G G G G

PEO 1 (SEC 2) System 9 Release 1 R R Y G G N/A Y N/A R R

PEO 1 (SEC 2) System 9 Release 2 R R Y G R N/A N/A N/A R G

PEO 1 (SEC 2) System 9 Release 3 R R Y G G N/A R N/A R G

Detailed Release AssessmentInitial Release Overall

Collect

Phase PEO SEC System

Definable

Maint.

Process

Total Program

Effort/Cost WBS 2-8

Project

Mgmt

(WBS-2)

License

Management

(WBS-3)

C&A

Support

(WBS-4)

System

Facilities

Management

(WBS-5)

Sustaining

Engineering

(WBS-6)

Field S/W

Engineering

(WBS-7)

Operational

Management

(WBS-8)

License

Costs

1 (PEO 4) SEC 3 System 1 G G G G N/A G G G N/A R N/A

1 (PEO 4) SEC 3 System 2 G G Y Y R Y Y Y N/A R G

1 (PEO 1) SEC 2 System 3 R G Y R G G Y Y N/A Y R

1 PEO 1 (SEC 2) System 4 G R O R R R R R N/A R R

1 PEO 1 (SEC 2) System 5 G G Y R R G Y G G G R

1 PEO 1 (SEC 2) System 6 G G O R R Y R R Y R G

1 PEO 1 (SEC 2) System 7 G G G G G G G G G G G

1 PEO 1 (SEC 2) System 8 G R R R R R R R R R R

Detailed System AssessmentInitial System Overall

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

10

Data Evaluation Phase I - Summary

• Formal data evaluation process was used to rate the data

- Data was collected from 56 programs*

• 43 programs provided total system SWM costs (G, Y)

- Rating criteria is shown below:

*Detailed breakout of data evaluation by data point provided in backup

Initial System Overall Detailed System Assessment

Definable

Maint.

Process

Total

Program

Effort/Cost

WBS 2-8

Project

Mgmt

(WBS-2)

License

Mgmt

(WBS-3)

C&A

Support

(WBS-4)

System

Facilities Mgmt

(WBS-5)

Sustaining

Engineering

(WBS-6)

Field S/W

Engineering

(WBS-7)

Operational

Mgmt

(WBS-8)

License

Costs

R 14 11 11 28 30 11 21 27 17 32 12

O 0 2 15 2 2 8 6 3 2 1 3

Y 1 12 16 8 4 14 11 9 8 10 1

G 40 31 13 18 12 20 16 16 6 11 35

N/A 1 0 1 0 8 3 2 1 23 2 5

Total 56 56 56 56 56 56 56 56 56 56 56

Table 1. Data Quality Levels

Color Definition Value

R Red indicates there is no planning or actual data reported. 0
O Orange indicates only planning data was reported. 1
Y Yellow indicates FTE or partial, actual data was reported 2
G Green indicates that actual data was reported. 3

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

11

Data Evaluation - WBS 1.0 Release Data

• Data was collected from 218 releases

– 146 releases had sufficient data to use in CER cost calculations (G,Y,O)

– Size data was not always consistently tracked and generally was not

mapped to resource (effort/cost/schedule) information
• 124 releases tracked some sort of software change counts (defects, PTRs)

• 109 releases tracked IAVAs

• Systems in different super-domains used different size measures

– Many weapon systems tracked SLOC data

*Detailed breakout of data evaluation by data point provided in backup

Initial Release Overall Detailed Release Assessment

 CER Usability SER Usability
Size:

Requirements

Size: External

Interfaces
Size: SLOC

Size: Non-

SLOC

Size: SW

Changes
IAVAs

Effort

(WBS-1)

Schedule

(WBS-1)

R 71 77 101 79 46 28 39 67 60 40

O 44 43 5 2 5 0 3 3 47 12

Y 23 22 3 2 4 2 5 0 23 27

G 79 75 70 55 69 12 116 106 87 138

N/A 1 1 39 80 94 176 55 42 1 1

Total 218 218 218 218 218 218 218 218 218 218

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

12

Phase I SWM Data Analysis

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

13

Analysis Background

• The analysis covers Phase I data only

- Phase II data will result in updated CERs and data demographics

• Estimating approach is specific to the SWM WBS. For any relationship

identified, the WBS coverage should be noted

• Given the data sample size, the super domain classification is used to group

similar data points

• All data points and associated classification are listed in the backup

• Utilized data represents both post deployment software support (PDSS) as

well as post production software support (PPSS)

• Utilized data was from a variety of appropriations (see normalization for how

this was handled)

• All costs shown are in BY 2016 $

• For regression analysis, the following fit statistics were utilized:

- R2

- P-value/T-stat/F-stat

- Standard Error of the Estimate

- Pred (30)

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

14

Limitations

• Data is not from a formal deliverable from a performing organization or

vendor. It was provided by programs via the DASA-CE SWM questionnaire.

• Programs have not historically tracked SWM execution costs according to

the DASA-CE SWM WBS. Data was often provided at an aggregate level or

broken out using SME judgement.

• Due to the nature of the data collection, it is assumed that reported costs

are more accurate than reported effort (hours). Future analysis will also

utilize effort data.

• It is assumed the super domain is a meaningful way to aggregate data

points.

• Given the data sample size, all data points were used for analysis*

*In a few cases outliers were removed, these instances are noted within the analysis

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

15

Super Domain Definitions

Real-Time

Real-Time is the most constrained

type of software. These are

specific solutions limited by

system characteristics such as

memory size, performance, or

battery life. These projects take

the most time and effort due to

constraints.

Microcode & Firmware

Signal Processing

Vehicle Control/Vehicle Payload

Other Real-Time Embedded

Command & Control

Communications

Engineering

Engineering software operates

under less severe constraints

than real-time software. This

software may take real-time

software outputs and further

process them to provide human

consumable information or

automated control of devices. Or

the software may perform

transformation and aggregation /

distribution of data.

System

Process Control

Scientific and Simulation

Test, Measurement, Diagnostic

and Evaluation

Support

Support software assists with

operator training and software

testing. This software has few

constraints.

Training

Software Tools

AIS

Automated information system

software provides information

processing services to humans or

software applications. These

applications allow the designated

authority to exercise control and

have access to typical business /

intelligence processes and other

types of information access.

These systems also includes

software that facilitates the

interface and control among

multiple COTS / GOTS software

applications.

Mission Planning

Custom AIS Software

Enterprise Service Systems

Enterprise Information Systems

Examples
Field Programmable Gate Arrays,

Flight Control, Missile Control,

Radar Altimeter, Network

Operations, Signal Electronics,

Tracking Sensors, Encryption,

Radio Networks, Propulsion

Examples Examples Examples

Operating Systems, Image

processing, Simulation &

Modeling, Test Equipment, File

Management, Artificial

Intelligence, Manufacturing

Process Control

Computer Based Training,

Compilers, Programming Aids,

Code Generators, Assemblers,

Courseware, Test case

generation, Linker/loaders, Code

Auditors

Scenario Generators, Target

Planning, Enterprise Service

Management, Enterprise

Resource Planning, Transaction

Processing, Data Warehousing,

Financial Transactions

Application Domains Application Domains Application Domains Application Domains

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

16

Cost Allocation Across the SWM WBS

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

17

All Phase I Systems

Sample Size: 43 Systems

113 Data Points

Pgm Mgmt
7.5%

Lic Mgmt
0.4%

Lic ODC
6.9%

C&A
11.5%

Fac
9.4%

Fac ODC
1.9%

Sust Engr
17.6%

FSE
8.9%

Op Mgmt
5.3%

SW Change
Product
30.7%

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

18

Cost Allocation by Super Domain

31%

28%

28%

35%

10%

20%

6%

5%

7%

14%

5%

9%

16%

4%

12%

10%

5%

4%

16%

10%

15%

19%

20%

14%

6%

2%

9%

14%

11%

9%

4%

3%

AIS

Support

Real Time

Engineering

SW Change Program Mgmt SW Lic C&A Facilities Sust Engr FSE Oper Mgmt

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

19

Distribution of Annual Cost

UNCLASSIFIED

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

20

N 122

Min $117,428

Q1 $2,350,442

Median $5,250,527

Q3 $11,948,232

Max $103,731,995

System Annual Cost (WBS 1.0 - 8.0)

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

21

Real-Time

AIS

Engineering

Support

System Annual Cost by Super Domain

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

22

System Annual Cost Summary

SD N Minimum Q1 Median Q3 Maximum

AIS 16 $2,783,335 $9,727,349 $15,301,506 $45,125,746 $66,448,489

ENG 38 $250,732 $2,320,639 $4,773,907 $10,734,471 $24,870,059

RT 55 $117,428 $1,363,244 $4,323,691 $10,355,772 $103,731,995

SUP 13 $3,729,674 $4,363,762 $6,003,356 $7,467,262 $9,120,451

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

23

Cost Estimating Relationships

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

24

Exploratory Data Analysis

R² = 0.1639

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

$40,000

0 10 20 30 40 50 60 70 80

R
e
le

a
s
e
 C

o
s
t
($

K
)

Software Changes

Software Changes vs Release Cost ($K)

R² = 0.0302

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

$40,000

0 500 1,000 1,500 2,000 2,500 3,000 3,500

R
e
le

a
s
e
 C

o
s
t

ESLOC (K)

ESLOC (K) vs Release Cost

R² = 0.0963

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 10000 20000 30000 40000 50000 60000 70000

A
ve

ra
ge

 A
n

n
u

al
 C

o
st

 (
$

K
)

Units Fielded / Users

Units Fielded vs Average Annual Cost

R² = 0.1165

0

500

1000

1500

2000

2500

3000

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0

S
o
ft

w
a
re

 C
h
a
n
g
e
s

Schedule Duration (Months)

Duration vs Software Changes

Scatter plots at the top level show significant variance. Phase II should

reduce variance and allow analysis on meaningful data subsets.

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

25

Initial Phase I CERs

Explanation of Variables:

ESLOC = Equivalent Source Lines of Code

New_Mod = Sum of New and Modified Lines of Code

SC = Software Change Count (Problem Reports, Defects, Issues, Change Requests, etc.)

Dur = Release Duration in months

Req = Software Requirements (SRS equivalent requirements)

*All CERs shown have a p-value < .005

*Min/Max values for each coefficient are shown in backup

Dependent Variable Equation Super Domain R2 Sample Size PRED(30) SEE

Duration 1.355 * Req^0.3323 AIS 60.04% 16 12.50% 4.7

Total Rel Cost 6,981 * New_Mod^0.4004 * Dur^0.755 All 65.10% 43 27.91% 7,260,456

Total Rel Cost 1,955 * Dur^.6423 * New_Mod ^.5382 * 1.796^RTDummy All - Outliers Removed* 81.10% 39 25.64% 5,941,321

Total Rel Cost 2,878 * Dur^.8052 * New_Mod ^.4938 All - Outliers Removed* 79.70% 39 35.90% 6,032,352

Ctr Hours 24.49 * New_Mod ^.624 All Non-IAVA 75.15% 38 26.53% 51,539

Total Hours 43.35 * New_Mod ^.5932 All Non-IAVA 71.75% 47 19.12% 180,076

Total Hours 34.67 * New_Mod^0.5911 ENG 76.47% 23 21.74% 44,340

Total Rel Cost 22,159 * New_Mod^0.4362 ENG 73.00% 14 21.43% 3,506,848

Total Rel Cost 28,941 * ESLOC^0.413 ENG 72.80% 14 21.43% 3,093,766

Ctr Hours 29.58 * New_Mod^0.5851 ENG 72.34% 20 15.00% 37,164

Cost per Month 65,626 + 10.82*New_Mod RT 79.63% 23 34.78% 174,130

Total Rel Cost 4,775 * New_Mod^0.4554 * Dur^0.764 RT 72.00% 27 22.22% 7,332,110

Total Rel Cost 2,697 * ESLOC^0.3728 * Dur^1.058 RT 68.10% 28 28.57% 7,495,672

Total Hours 939.51 * SC^0.5177 SUP 89.91% 13 61.54% 5,309

Ctr Hours 794.69 * SC^0.516 SUP 88.59% 13 69.23% 5,126

Total Rel Cost 47,858 * SC^0.3267 * Dur^0.516 SUP 75.50% 13 46.15% 242,287

Total Rel Cost 123,588 * SC^0.3847 SUP 64.90% 14 28.57% 393,099

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

26

Cost Benchmarks

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

27

Cost Per Software Change
Support and Engineering Super Domain

• Cost per Software Change is shown by Super Domain

• Software change count only includes program reported software changes. It does not separately

include IAVA counts

• Software Changes are also commonly referred to as problem reports, change requests, defects, etc.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

2,916 33,302 63,688 94,074 124,460

F
re

q
u

e
n

c
y
 (

S
u

p
p

o
rt

)

LogNormal

Support

Support (Cost in BY 2016 $) Sample Log Normal
Mean 36,095.37 39,483.68

Std Dev 35,829.35 39,076.58
CV 0.99 0.99

Min 2,915.83
Mode 14,177.15
Max 109,267.40

Count 13

Standard Error of Estimate 11,687.15

0.0

2.0

4.0

6.0

8.0

10.0

12.0

3,508 336,872 670,236 1,003,599 1,336,963

F
re

q
u

e
n

c
y
 (

E
n

g
in

e
e

ri
n

g
)

LogNormal

Engineering

Engineering (Cost in BY 2016 $) Sample Log Normal
Mean 203,834.97 240,949.52

Std Dev 329,675.15 795,858.95
CV 1.62 3.30

Min 3,507.83
Mode 5,862.26
Max 1,336,963.22

Count 16

Standard Error of Estimate 41,198.89

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

28

Cost Per Software Change
AIS and Real Time Super Domain

• Cost per Software Change is shown by Super Domain

• One data point was removed from the Real Time dataset for this chart. See backup for distribution

with outlier included

• Software change count only includes program reported software changes. It does not separately

include IAVA counts

• Software Changes are also commonly referred to as problem reports, change requests, defects etc.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

3,316 77,661 152,007 226,352

F
re

q
u

e
n

c
y
 (

A
IS

)

LogNormal

AIS

0.0

5.0

10.0

15.0

20.0

25.0

920 101,626 202,331 303,037 403,743

F
re

q
u

e
n

c
y
 (

R
e

a
l
T

im
e

)

LogNormal

Real Time

AIS (Cost in BY 2016 $) Sample Log Normal

Mean 52,752.21 59,727.81
Std Dev 59,343.51 83,427.32

CV 1.12 1.40
Min 3,315.94

Mode 11,781.94
Max 189,179.63

Count 10

Standard Error of Estimate 10,672.45

Real Time (Cost in BY 2016 $) Sample Log Normal

Mean 50,876.79 52,710.70
Std Dev 76,033.47 119,536.17

CV 1.49 2.27
Min 919.76

Mode 3,462.16
Max 403,742.77

Count 30

Standard Error of Estimate 17,432.58

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

29

Cost per IAVA

 Cost in BY 2016 $ Sample Log Normal

Mean 7,546.79 7,608.06

Std Dev 3,767.77 3,783.15

CV 0.49 0.49

Min 2,659.91

Mode 5,461.81

Max 17,623.77

Count 40

Standard Error of Estimate 537.34
0.0

2.0

4.0

6.0

8.0

10.0

12.0

2,660 5,653 8,645 11,638 14,631 17,624

F
re

q
u

e
n

c
y
 (

IA
V

A
s

)

LogNormal

• Only Information Assurance Vulnerability Alert (IAVA) releases were used, which is a

subset of the release data set

• Graph represents (IAVA release cost) / (IAVA count for the release)

• Includes government and contractor effort

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

30

Measurement Benchmarks

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

31

IAVAs Per License Per Year

• Graph illustrates the number of IAVAs per license per year for each Super Domain

• IAVA release rhythm is different for each program. Data is normalized to a yearly amount

• Two Outliers removed (Engineering and Support Domains). See backup for analysis with outliers

included

SUP AIS ENG RT

Sample
Size

8 9 9 9

Min 0.23 1.00 0.08 0.56

Q1 5.68 4.06 3.20 2.64

Median 9.43 7.33 4.46 3.80

Q3 11.11 8.63 17.59 4.82

Max 13.64 37.0 55.89 20.00

Mean 8.29 9.39 14.45 5.18

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

32

DSLOC per FTE

• DSLOC represents Delivered Source Lines of Code which counts all code equally

• The earliest baseline size reported was used to represent DSLOC

• Full Time Equivalent (FTE) counts were derived by including the following WBS Elements: SW

Change Product (1.0), Program Management (2.0), Sustaining Engineering (5.0), and Certification

and Accreditation (4.0)

• FTEs were derived by using labor hours per man-year and labor rate reported for each program

• Only Real Time and Engineering had sufficient data to derive DSLOC/FTE

RT ENG

Sample Size 16 6

Min 877.8 3,983.1

Q1 1,558.4 12,687.0

Median 6,736.0 21,436.4

Q3 18,534.1 41,624.9

Max 80,734.1 55,863.18

Mean 13,501.5 26,171.9

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

33

Baseline Percent Change

• Baseline percent change was calculated for each release as follows:

• (New Code+ Modified code) / Delivered Code (DSLOC)

• The earliest baseline size reported was used to represent DSLOC

• Only Real Time and Engineering had sufficient data to derive Baseline Percent Change

RT ENG

Sample Size 38 18

Min 0.2% 0.2%

Q1 1.5% 0.7%

Median 3.4% 6.6%

Q3 16.5% 21.9%

Max 44.6% 37.5%

Mean 10.3% 12.3%

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

34

Summary of Phase I Data Issues & Way Ahead

Phase I Data Issues

• Lack of standardized process for data collection for software maintenance

• Inability to map executed cost/effort data to software maintenance output activities and

software change products

• Volatile change requirements and execution priorities hinder execution tracking

• Multiple funding streams are often separately managed

• For many systems, the government is heavily leveraged on contractors which limits

insight into cost data

Way Ahead

• Phase II data collection (in-progress)

- Phase II includes an additional 196 Army programs

- Examples of future research using Phase II data:

• Refined CERs by application domain, organization, operating environment, etc.

• Schedule Estimating Relationships (SERs)

• Release rhythm analysis

• Release characterization (enhancement, defects, cybersecurity) analysis on WBS 1.0 SW Change Product

• Software Maintenance cost model

- Phase II data will be used to validate CERs and Phase I analysis

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

35

SWM Data Demographics

UNCLASSIFIED

Distribution Statement A: Approved for Public Release

Measure Phase I Phase II

Number of Programs 56 97*

Total Cost Captured $683,974,500 $ 2,108,960,500

Super Domain Phase I Phase II

AIS 36 197

ENG 66 180

RT 89 299

SUP 19 19

Total 210 695

79

115
98

21

66

388

240

33

0

50

100

150

200

250

300

350

400

450

SLOC SC IAVAs Other

Size Measures by Release

Phase I

Phase II

30

41

23

3

19

68

59

4

0

10

20

30

40

50

60

70

80

SLOC SC IAVAs Other

Size Measures Reported by
Programs

Phase I

Phase II

Overview

Number of Releases

* Approx. 100 additional records will be added to the database.

36

Implementing the SRDR-M

• Systemic data collection

- The Software Resources Data Reporting for Maintenance (SRDR-M*) closely aligns to the

DASA-CE SWM WBS and data requirements

- Moving forward, the SRDR-M will be utilized to collect SWM data from a large number of

programs across the Army

• Challenges with implementation

- Army contracting strategy for sustainment does not lend itself to strategic CSDR planning

- Policy for reporting for ACAT II/III programs (acquisition vs sustainment policy)

- No standardized government labor tracking for organizations performing SWM

- Cost model/training required for sustainment community

*See http://cade.osd.mil/policy/dids for more information

UNCLASSIFIED

Distribution Statement A: Approved for Public Release

http://cade.osd.mil/policy/dids

37

Contributors

James Judy

NISEC Division Chief

ODASA-CE

703-697-1612

Jenna Meyers

Senior Operations Research Analyst

ODASA-CE

703-697-1645

James Doswell

Senior Operations Research Analyst

ODASA-CE

703-697-1572

Cheryl Jones

Software Measurement Analyst

US Army ARDEC

973-724-2644

John McGarry

Software Measurement and Analysis

Lead

US Army ARDEC

973-724-2644

Brad Clark

Vice President

Software Metrics, Inc.

(703) 754-0115

John Staiger

Principal Consultant

Quantitative Software Management,

Inc.

(703) 790-0055

Doug Putnam

Principal Consultant

Quantitative Software Management,

Inc.

(703) 790-0055

Robert Charette

President

ITABHI Corporation

(540) 972-8150

Colin Stratakes

Operations Research Analyst

ODASA-CE

703-697-1626

UNCLASSIFIED

Distribution Statement A: Approved for Public Release: Distribution is Unlimited

UNCLASSIFIED

| 1 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Apples and Oranges
An experience in using cloud

Cost Calculators and Rate Cards

3rd annual Software and IT-CAST forum

22-24 August 2017

Kevin Buck

Daniel Harper

Charlie Dobbs

Presenters: Additional contributors:

Tony Dziepak

John Metcalf

Eric Krebs

| 2 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Outline

Motivation and Approach

Our Application Questionnaire

 Calculators and Tools Considered

 Cost Estimate Comparison

 Comparing Apples and Oranges

 Lessons Learned

 Next Steps

| 3 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Motivation and Approach

 Team tasked with achieving DoD sponsor’s objectives:

‒ Instantiate an on-premises, contractor-owned, contractor-operated (COCO)

cloud pilot

‒ Better understand cloud cost, schedule, and performance implications

 Assessed reasonableness of sponsor Independent Government

Cost Estimate (IGCE) by comparing to available cost estimate

benchmarks

‒ Team input candidate systems’ data into over a dozen calculators and rate

cards for estimating storage and hosting costs for cloud applications

 Evaluated relationship between application complexity and cloud

cost

‒ Developed an Application Complexity Plotter to visualize complexity

 Began developing a parameterized cloud cost model that could

support Total Ownership Cost (TOC) assessment, Return-on-

Investment (ROI) analysis, and “what if” scenario-building

| 4 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Our Application Questionnaire

Application
Impact

Workload

Architecture

Dependencies

Size

Utilization

Transmission

Storage

Backup

Security

Quality

Risk

Other

App Type

User Locations

Accreditation

Impact Level

Criticality

NIPR/SIPR

User Types

of Users

Demand Volatility

Virtualization

Operating System

Load Balancers

Type and Number

Hard Coding

Licensing

Cores

Server Types/Qty

RAM

System

Utilization

Network

Utilization
Method

Connection Speed

Peak Rate

App Storage

DB Storage

Logs Allocation

Requirements

Backup Size

Svc Continuity

Encryption

Identity Mgmt

Authentication

Documentation Quality

Refactoring Risks

Migration Risks

Other complexity

considerations

Complexity?

To select, prioritize, and plan

| 5 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Candidate Application Data

 Received a wide variety of data on ~30 systems from multiple commands

and CONUS geographies, complexities (low-high)

 Key usable inputs across the various calculators were number of cores*,

required memory/RAM, and required storage

A core is the central processing unit (CPU) that executes sequential instructions. A single

silicon chip can have as many as 22 cores. A core is the basic computation unit of the CPU.

| 6 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Status Quo O&S Cost for Some Apps

 Received one year of status quo operations cost for 23 systems

Collection of status quo apps ops costs provided insight

into costs, but lacked fidelity

| 7 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Early Analysis: Number of Cores as a

Predictor of Memory & Storage Cost
A

n
n
u

a
l
C

o
s
t

| 8 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Calculators and Tools Considered

 Online calculators:

– FEDRAMP GovCloud Shopper

– Cloud.gov

– Microsoft Azure online calculator

– Amazon Web services online calculator

– Google Web services calculator

– Cloudorado

 Rate cards/Spreadsheet calculators :

– DISA MilCloud Rate Card

– DOD Rate Card Estimator (draft)

– Navy Cloud Store (AWS)

– LOGSA Rate Card

– GSA IAAS Estimator

– Cloud Cost Lite-MITRE developed tool

– Technology Insertion Model (MITRE-

developed tool with migration component)

– DOD CIO Cloud Calculator (in

development)

 Individual vendor rates

 Commercial Parametric Models

| 9 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Rate Cards…User Beware!

 Rate cards should be taken with a grain of the proverbial salt

 2016 DISA Rate card

 Some sort of estimating methodology has to be assumed/created, as

well as a discussion with the maker of the rate card to get context

 IT Shops sometimes provide "rate

cards" or catalogs that provide costs

for various services.

 Unfortunately, frequently little to no

context is provided, And there may be

little insight as to how inputs are

applied (“blackbox”). Excel-based

calculators were more transparent, but

insight was still lacking.

 For example, the DISA Rate Card is a

single pdf spreadsheet listing prices

for various services, with very little

explanation

| 10 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Cost Estimate Comparison

We compared the sponsor’s IGCE to 17 calculator estimates

| 11 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Cost Estimate Comparison

To assess the reasonableness of an IGCE, developed ROM estimates using

available tools, calculators, and rate cards from Government, DoD, and

commercial industry.

The current legacy status quo estimate is approximately $20M/year for 34

apps. In a Cloud environment, all comparison benchmarks are less than

$10M/year, representing more than a 50% reduction in expected cost.

The second stacked bar from the left represents the IGCE. $3.8M per year

to host 34 apps compares reasonably with other benchmarks.

| 12 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Comparing Apples and Oranges

 Many vendors include or leave out items that do not vary in their

standard offerings

 Most vendors will offer a custom quote for non-standard items

 Apples and Oranges can still be compared. They must first be

normalized as much as possible.

Compute & Storage $$

Security Level Connectivity Utilization Allowance
(elastic, reserved)

IaaS, PaaS, SaaS

 The cloud achieves efficiencies through standardization, shared

resources and commoditization.

Each vendor has

their own "secret

sauce”

Items may be

bundled

differently by

vendor and by

model

| 13 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

The majority of models ask about:

Labor inducing factors

(like # of VMs, PaaS)

Utilization

Operating System (i.e. Windows,

Linux)

Transmission

Storage

Almost all models ask

about:

Calculator/Tool Inputs

Partial Universe of Cost Calculator/Rate Card Inputs

Occasionally models/rate cards prompt

questions on:

Software & Server

Types

Value added offerings

e.g.,

• Architecture

• Monitoring

• Security

Inputs that Typically Drive Costs

are shown by red ovals

Transmission

Memory

Compute

Of these, here are the inputs that appear to matter the most

| 14 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Lessons Learned about Calculators,

Rate cards, and Cloud Cost Tools

 Most models only calculate annual recurring costs, with no

allowance for storage and compute growth year-over-year

 Models do not estimate other major cost elements such as: system

engineering and program management; integration and test;

security-related costs; professional/managed services, migration

costs

 Some tools include an option to estimate Disaster Recovery, COOP,

and some additional professional services

 On versus off-premise considerations were not inputs to most

calculators

 Private vs. public considerations were not inputs to most

calculators

 Few tools include cost for uncertainty/risk

 Some models do not use cloud impact level (DOD-specific term) but

instead use Federal Information Security Management Act (FISMA);

others had no security variable

| 15 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Next Steps: Parameterized Lifecycle Model for

Cloud

Cloud

Hosting

Options

Deployment

Models:
• IaaS

• PaaS

• SaaS

Service

Models:
• Private

• Community

• Public

Current Cost

Basis of

Estimate

GR&A

Application Complexity

Plotter (Next slide)

Storage $

Compute $

Transmit $

Managed Service $

Other – Optional

Pay per Use

Hosting

Requirements

MODEL INPUT MODEL OUTPUT MODEL TRANSFORM

Functional

Drivers of

Cloud Cost

Objective

Subjective

Insourced vs Outsourced:

IGCE

LCCE

What-If Calculator

CBA

BCA

Reporting

| 16 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Next Steps: Application Complexity as an Indicator of

Cloud Cost Impact

Backup

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

| 18 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

NIST Cloud Definition

| 19 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

NIST Cloud Services

| 20 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Lessons Learned about our Analysis

 It’s a pilot-we will learn from it!

For this project, we had to remind

ourselves that the reason our

customer was conducting a pilot in

the first place was because we did

not have all the answers-including

what it would cost.

 Inform the customer to manage expectations.

In our customer’s case, they were going to a private, on-premises cloud;

much of the cost savings associated with the public cloud (due to

amortized costs over multiple customers) would not be realized.

– Note cost differences (e.g., high upfront costs, less realized savings) as well

as benefits (e.g., higher security)

 No formal survey existed that we could find comparing multiple

calculators, though several had examined AWS & DISA.

 Use an RFI as a tool to gather information directly from vendors

 Access to cloud subject matter experts key

| 21 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Google Cloud Calculator

| 22 |

© 2016 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 16-1409

Clouderado Pricing Tool-the “Kelly Blue
Book” of Clouds

 Key Inputs:

– VM Size, Qty, Storage

(Doubling storage doubles $)

 FISMA low/moderate only.

 Backup/storage computed

together.

 Provides low-average high

range

 Also provides prices for

utility cloud services

 Considers 19 vendors

© Copyright 2017 Quantitative Software Management, Inc. All Rights Reserved

Discovering the Rosetta Stone:
A Strategic Method to Software Sizing

Presented at the Software IT-CAST Meeting

August 23, 2017
Crystal City, VA

Presenters: Victor Fuster & Taylor Putnam-Majarian
Quantitative Software Management, Inc.

2010 Corporate Ridge, Suite 500
McLean, VA 22102

703.790.0055 ● 703.749.3795 (fax)
info@qsm.com ● www.qsm.com

INTRODUCTION

Contents

• Sizing Overview

• Rosetta Stone Approach to Sizing

• Gearing Factors Research

• Theory into Practice

3

Three Main Estimation Methods

Role-Based Task-Based Scope-Based

PEOPLE IN ROLES TASKS & ACTIVITIES PRODUCTS

Here are three
different approaches
to estimating
projects. All methods
have value. You can
use more than one
approach, depending
on the lifecycle
phase and the data
available.

Estimate Based On:
Roles and skills
required to build the
product

Attributes of the
product to be built

Activities necessary
to build the product

Estimation Strength:
Most implicit: depends
on task, experience,
culture, lifecycle, etc.

Most explicit: driven
by what has to be

delivered

Somewhat implicit:
affected by lifecycle

used, project variables,
etc.

To
producePerform

Work Activity Statement

“People, working at some level of productivity,
produce a quantity of function or a work product
at a level of reliability by the expenditure of effort
over a time interval.”

- Lawrence H. Putnam & Ware Myers

5Larry Putnam and Ware Myers, Five Core Metrics, 2003

SIZING CHALLENGES

What is “Size”?

• A proxy for the functionality and knowledge content of the
delivered system—what the system is worth

• Size can be indicated by a number of metrics:

Front end: Unit of Need
Based on characteristics of the
statement of needs
• Requirements
• Function Points/Object Points
• IO Counts
• States/Events/Actions
• Use Cases
• Stories/Story Points/Epics
• Objects/Classes
• Components
• Design Pages
• Web Pages

Back end: Unit of Work
Based on the characteristics of the system
when built
• Lines of Code
• Statements
• Actions
• Modules
• Subsystems
• GUI Components
• Logic Components
• Logic Gates
• Tables

Each unit has a “relative weight”
and precision.
Front end units tend to be less
precisely defined, while the
prediction of the count of back
end units tends to be less precise.
The relative weight measures the
size or “complexity” of the unit
and is called a Gearing Factor.

7

People speak vastly different languages when it comes to
software product sizing. Excluding ISO standard function point

methods, there are no standard definition for the most
popular sizing techniques.

Perception of Right vs
Wrong Method

 Sizing should makes sense to
your organization, but depends
on empirical measurement.
 Consistency is paramount.

An Emotional Topic

 Important considerations like
budget allocation, resource
commitments, and schedules
are usually inextricably linked to
project scope: stakeholders take
a vested and serious interest in
all of those variables.

Perception that Useful
Comparisons Are Impossible

 Organizations that have the
mindset “we’re different” miss
the opportunity to benchmark
their estimates and completed
projects against industry data
for improved decision making.

The Challenge

Root Causes

Insights

1. Objectively measure the
envisioned software output
and start with a base unit of
both functional and
technical size – using the
best information you have.

2. Secure sizing inputs and
endorsement of those
closest to the project who
understand what the
desired outcome is, and
what it might take to
achieve it.

3. Translate ballpark size
with other sizing
techniques so audiences
speaking different
languages get the same
understanding.

The Sizing Dilemma

8

Sizing Units Defined

• Source Lines of Code (SLOC) - Equal to the new and/or modified code
delivered to an end user. Reused and deleted code, blank lines,
comment lines, and test scripts are not included. Equal to a Basic Unit
of Work.

• Function Points – ISO standard method of counting the amount of
business functionality an information system provides to a user. Certified
FP counters record the number of EI, EO, EQ, ILF, and EIF in a system.

• Functional Requirements – Describe the functions that the software is
supposed to execute1. Typically written as “shall” statements2.

• Business Requirements – Higher-level of abstraction that can be useful
for initial estimates. Each high-level business requirement is a
“container” for multiple lower-level functional requirements.

• RICEFW Objects - Common ERP sizing method which includes both
custom development (Reports, Interfaces, Conversions, Extensions,
Forms, and Workflows) as well as the configuration portion (high-level
and detailed business processes or scenarios).

9
12004 IEEE Software Engineering Body of Knowledge

2see IEEE Std 830-1998

Agile Sizing Units Defined

 Use Cases – Used in both Agile and traditional development,
is a technique documenting functional requirements that
(1)describe the interactions between an actor and a
software system to achieve a goal, and (2) include a main
success scenario as well as extensions that represent
alternate paths in the logic flow.1

• User Stories – similar to a single scenario of a use case.2 Unlike a
use case, user stories do not specify requirement details; they
are placeholders for future conversations between developer
and customers to quantify the requested functionality. Defects
were not included as user stories.

• Epics – Epics should be considered at a higher level of
abstraction which are still useful for initial size approximations
and product estimates. Similar to Homer’s epic, The Odyssey,
which is a collection of stories, Agile epics function similarly.

10
1 Ivar Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach, 1992

2 Mike Cohn, author of User Stories Applied for Agile Software Development.

Sizing Methods Used at Various Stages of the Software
Development Life Cycle

The sizing method used should be based on available information and where
you are in the software development life cycle vs. the “Cone of Uncertainty.”

Initial
Concept

Approved
Product

Reqs
Spec

Product
Design

Detailed
Design

Product
Complete

U
nc

er
ta

in
ty

4X

0.25X

Ballpark feasibility
estimates:
- Sizing by analogy
- T-shirt sizing Initial project-level

estimate:
- Business requirements
- Use cases

Final project estimate:
- Functional requirements
- User stories
- Use case scenarios
- Function points

In-flight forecasting /re-
planning:
- Functional requirements
- User stories
- Use case scenarios
- Function points
- RICEFW objects
- Modules
- Technical components
- Source code files

Project closeout /
benchmarking:
- Function points
- Source lines of code

11Adapted from: Boehm, Software Engineering Economics (1981) &
McConnell, Software Estimation (2006)

Facilitate Communication Between Requirements
Authors and Developers

Requirement

User Story

User Story

User Story

12

Requirements Author Developer

The Ol’ Bait and Switch

13

ROSETTA STONE APPROACH

• Discovered in 1799 near
the town of Rashid, the
Rosetta Stone translated
the same text into three
different languages
– Ancient Egyptian

hieroglyphics
– Demotic script
– Ancient Greek

• Helped give meaningful
understanding of
hieroglyphics, which
previously could not be
understood

• The Rosetta Stone became
essential in understanding
ancient Egyptian literature
and civilization

The Rosetta Stone

15

How it works:
1. Identify any available

early sizing methods and
a basic sizing unit

2. Apply gearing factors to
the early sizing unit

3. Translate the early size
into other popular sizing
techniques, so an
audience speaking
different “languages”
gets the same
understanding of
product size

Applying Rosetta Stone Concept to Software Sizing

16

Story Points
SLOC

Business Requirements
Use Cases
Epics

Functional Requirements
Use Case Scenarios
User Stories

17

Applying Gearing Factors

Front End = Function Unit
• Customer language
• Scope definition

Back End = Basic Unit of
Work
• Most elementary

development step
• Normalizing size unit

Component # of Components Gearing Factor

Simple Purple Dragons 25 600 SLOC/ PD

Average Purple Dragons 35 1200 SLOC / PD

Complex Purple Dragons 10 5500 SLOC / PD

Gearing Factor
• Relative complexity

17

Calculating the Gearing Factor

Project

Requirement

RICEFW Object
SLOC

SLOC

RICEFW Object
SLOC

SLOC

RICEFW Object
SLOC

SLOC

Requirement

RICEFW Object
SLOC

SLOC

RICEFW Object
SLOC

SLOC

RICEFW Object
SLOC

SLOC

RICEFW Object
SLOC

SLOC

RICEFW Object
SLOC

SLOC

Requirement
RICEFW Object

SLOC

SLOC

RICEFW Object
SLOC

SLOC

18

Unit of Need Unit of Work

Gearing Factors Research

• Examined a sample of 150+ projects that used two or more
sizing methods:

– SLOC (n ≈ 150)
– Requirements (n ≈ 65)
– Function Points(n ≈ 100)
– Use Cases (n ≈ 10)
– User Stories (n ≈ 10)
– RICEFW Objects (n ≈ 85)

• Business, Engineering, and Real Time domains represented
from 100+ organizations

• Calculated the average gearing factor ranges for each
sizing method

19

Note: Projects included only
those recent, completed and
validated across government
and industry that reported at

least 2 sizing metrics

Methods

Example: Requirements
• Examined the relationship between functional requirements

and a base size unit (SLOC) to calculate gearing factors
• Examined relationship between functional requirements and

“container” sizing units (i.e., Business Requirements)
• Certified Function Point

Specialist performed a
Function Point count on a
representative sample of
programs that were sized
in functional requirements

• Repeated this process for
other represented sizing
methods

20

Translating from One Sizing Unit into Others

If one of the sizing units is known, any of these other popular
sizing methods can be approximated as well

21

Functional
Requirements Function Points

Business
Requirements

Use Cases
User Stories

RICEFW Objects
SLOC

Known Unit Calculated Units

PUTTING THEORY INTO
PRACTICE

Potential Uses

• Facilitate communication among stakeholders
who may think differently about sizing

• Aid discussions around sizing to avoid pitfalls
and improve estimates at each stage of the
software development lifecycle

• Audit the size estimate if sizing methods change
– Did the program size grow significantly after

changing the sizing method from RICEFW objects
to Stories?

– Is functionality duplicated or lost by changing the
sizing method?

• Crosscheck the estimate

23

Vendor Bid Assessment

• Common application for DoD and Industry

• Evaluating different types of proposals

• Not a silver-bullet, but starts the discussion within the
evaluation process and enables comparison

24

RFI/RFP
Data Request

Template
(Size, Schedule, Cost, etc)

Responses Received

Vendor Bid Assessment

25

Vendor Sizing Cost (Effort/Staffing) Schedule Risk ?

Alpha 200 RICEFW Objects 2M 12 Mo

Bravo 3000 Function Points 2M 22 Mo

Charlie 150 Functional Reqs 5M 16 Mo

Delta 50 Business Reqs 10M 24 Mo

Vendor Sizing Rosetta Technique Cost Schedule Risk ?

Alpha 200 RICEFW Objects 60k IU 2M 12 Mo

Bravo 3000 Function Points 150k IU 2M 22 Mo

Charlie 150k Functional Reqs 25k IU 5M 16 Mo

Delta 50 Business Reqs 100k IU 10M 24 Mo

With comparable sizing we can begin to discuss reasons for discrepancy and better model
feasibility of the vendors proposed development plan

Organizational Translator

• Common application for DoD and Industry

• Many stakeholder layers and perspectives often create
obstacles for a common sizing picture

• Enables better expectation realism and stakeholder buy-in

26

VS.

Project
Size (IU)

Functional
Reqs

Function
Points

RICE
Objects

Organizational Translator

27

Vendor

Senior Leadership

IV&V

• Organization implementing
new ERP solution

• Senior leadership wanted to
ensure all requirements were
met

• Vendor was proposing in their
common RICE Objects
methodology

• IV&V Team wanted to ensure
all aspects of development
were being considered among
stakeholders(Org reqs, all
interface considerations, etc.)

Closing

28

• Sizing
– Many metrics available - be consistent
– Challenges exists (environment, history, business)

• Rosetta Stone Approach to Sizing
– Methods for translation among stakeholders

• Gearing Factors Research
– Initial findings provide emerging utility

• Theory into Practice
– Successful implementation in various environments

QUESTIONS?

29

Presenters: Victor Fuster & Taylor Putnam-Majarian
Quantitative Software Management, Inc.

2010 Corporate Ridge, Suite 500
McLean, VA 22102

703.790.0055 ● 703.749.3795 (fax)
info@qsm.com ● www.qsm.com

UNCLASSIFIED

This document was generated as a result of the AFCAA-led, Software Resource Data Report

Working Group (SRDRWG). This working group represented a joint effort amongst all DoD service

cost agencies. The following guidance describes SRDR data verification and validation best

practices as documented by NCCA, NAVAIR 4.2, AFCAA, ODASA-CE, MDA, and many more.

UNCLASSIFIED

2

• Purpose

• SRDR Need Statement

• SURF Purpose

• SURF Created Process Initiation

• SURF Team Structure

• SURF Verification & Validation (V&V) Guide

• SRDR V&V Process

• SRDR Database

• SRDR Data Quality Review

• SURF Status and Metrics

• Summary

UNCLASSIFIED

3

• To familiarize the audience with recent Software Resource Data

Report (SRDR) Working Group (WG) efforts to update existing SRDR

DID language and implement data quality improvement

• To clarify how these SRDRWG efforts led to the development of a

SRDR Unified Review Function (SURF) team

• To highlight:

− SURF mission

− Highlight SURF team and Verification and Validation (V&V) guide

positive impact on SRDR data quality

UNCLASSIFIED

4

• Reduces inaccurate use of historical software data

– Aligns with OSD CAPE initiative(s) to improve data quality

• Helps correct quality concerns prior to final SRDR acceptance

• Allows a central group of software V&V SMEs to tag SRDR data

• SRDR submissions are used by all DoD cost agencies when developing

or assessing cost estimates

• Quality data underpins quality cost and schedule estimates

BBP Principle 2: Data should drive policy. Outside my door a sign is posted that reads, "In God We Trust;

All Others Must Bring Data." The quote is attributed to W. Edwards Deming

 - Mr. Frank Kendall, AT&L Magazine Article, January-February 2016

UNCLASSIFIED

5

Purpose:

• To supplement the Defense Cost Resource Center (DCARC) quality review for SRDR

submissions

• To develop a consistent, service-wide set of quality questions for all DoD cost

community members to reference

• To provide a consistent, structured list of questions, focus areas, and possible

solutions to cost community members tasked with inspecting SRDR data submissions

for completeness, consistency, quality, and usability (e.g. SRDR V&V Guide)

Why?

• SURF represents an effort to establish a consistent guide for any organization

assessing the realism, quality, and usability of SRDR data submissions

• Quality data underpins quality cost and schedule estimates

Question: What services helped develop the questions included within the latest SRDR V&V guide?

Answer: All services participating in the SRDR WG provided feedback, comments, and reviews over a year long SRDRWG effort

focused on establishing higher quality review efforts coupled with an ongoing SRDR DID update

UNCLASSIFIED

Recommendation

1. Revised SRDR Development

Data Item Description (DID)

2. New SRDR Maintenance Data

Item Description (DID)

3. Joint Validation & Verification

(V&V) Guide, Team, and

Process

4. Software Database Initial

Design and Implementation

Process

Benefit
1. Reduces inconsistency, lack of

visibility, complexity, and subjectivity in

reporting

2. Aligned w/ dev. but w/ unique

data/metrics available/desired for

maintenance phase

3. Higher quality, less duplication - ONE

central vs many distributed; 1 joint team

& guide gives early, consistent

feedback to ktrs

4. Avoids duplication, variations - ONE

central vs many distributed; Based on

surveyed best practices and user

expectations

6

Question: How was the SURF team created and is it linked to the SRDRWG?

Answer: Yes. The SRDR Unified Review Function (SURF) team was organized as part of the larger, SRDRWG initiative during 2015

UNCLASSIFIED

SURF Secondary:

SURF Primary:

DCARC Analyst & STC:

DoD

William
Raines

Navy

Corrinne Wallshein

Wilson Rosa

Stephen Palmer

Philip Draheim

Sarah Lloyd

Marine Corps

Noel Bishop

John
Bryant

Air Force

Ron Cipressi

Janet Wentworth

Chinson Yew

Eric Sommer

Army

Jim Judy

Jenna Meyers

James Doswell

 Michael Smith

Michael Duarte

SPAWAR

Jeremiah
Hayden

Min-Jung
Gantt

MDA

Dan
Strickland

7

• Team is comprised of one primary member per service along with support from

secondary team members (Government Only)

• As submissions are received, SRDR review efforts will be distributed amongst SURF

team members to balance workload

• SURF Team Coordinators (STC): Marc Russo & Haset Gebre-Mariam

• Current SURF structure:

Question: How do members get involved with SURF? Why are there “primary” and “secondary” members?

Answer 1: The SURF team was established by Government SRDRWG members who were recommended/volunteered by each DoD service

Answer 2: Primary members are included on CSDR S-R IPT email notifications for their specific service. Secondary members are contacted

during periods of increased review demands, if necessary.

SURF Team Coordinators (STC)

Marc Russo

Haset Gebre-Mariam

SURF Advisor & Process Owner

(SAPO)

Nick Lanham

SRDR Submission received from
DCARC

UNCLASSIFIED

8

• Guide represents first-ever, joint effort

amongst DoD service cost agencies
– OSD public release approved 5 April 2016

– Kickoff email distributed on 1 May 2017 to update

guide with latest DID requirements

– Files can be downloaded using following link:

http://cade.osd.mil/roles/reviewers#surf

• Enables ability to consistently isolate

software cost relationships and trends

based on quality SRDR data
– Now includes quick-reference MS excel question

checklist by SRDR DID section

• Two main purposes:
– SRDR V&V training guide (V&V questions)

– Focus areas used to determine SRDR quality tags

Question: Did a standardized-joint service, software-specific quality review guide exist prior to the SURF V&V guide? Who contributed to the

development of this document?

Answer 1: No. Services implemented very inconsistent SRDR review methodologies (if conducted at all) prior to DCARC acceptance

Answer 2: The SRDR V&V guide was developed by the SURF team and has been reviewed by numerous SRDRWG, OSD CAPE, and other

cost community team members. Feedback from other services has generated significant improvements from initial draft.

http://cade.osd.mil/roles/reviewers#surf
http://cade.osd.mil/roles/reviewers#surf

UNCLASSIFIED

1.0 Review of an SRDR submitted to DCARC

1.1 Reporting Event

1.2 Demographic Information

1.3 Software Char. and Dev. Process

1.3.1 Super Domain and Application Domains

1.3.2 Operating Environment (OE) Designation

1.3.3 Development Process

1.4 Personnel

1.5 Sizing and Language

1.5.1 Requirements

1.5.2 Source Lines of Code (SLOC)

1.5.3 Non-SLOC Based Software Sizing

1.5.4 Product Quality Reporting

1.6 Effort

1.7 Schedule

1.8 Estimate at Completion (EAC) Values

2.0 Quality Tagging

3.0 Solutions for Common Findings

3.1 Allocation

3.2 Combining

3.3 Early Acquisition Phase Combining

4.0 Pairing Data

5.0 Possible Automation

Appendix A – SD and AD Categories

Appendix B – Productivity Quality Tags

Appendix C – Schedule Quality Tags

Appendix D – SRDR Scorecard Process

9

V&V Questions and Examples Developed and Organized by

Individual SRDR reporting Variable

UNCLASSIFIED

10

• When assessing Effort, the V&V priority is determining completeness

• Determining completeness is not always easy due to:

– The contractor possibly collecting/reporting their actual performance using categories that differ

from the IEEE 12207 standard

– The contractor reporting all of their Effort within the Other category

• Common questions to ask when looking at the effort are:

– Was effort data reported for each CSCI or WBS?

– Was effort data reported as estimated or actual results? If the submission includes estimated

values and actual results, does the report include a clear and documented split between actual

results and estimated values?

– Is the effort data reported in hours?

– Is effort data broken out by activity?

– What activities are covered in the effort data? Is there an explanation of missing activities

included within the supporting SRDR data dictionary? ….

V&V Guide Includes Specific Questions For SURF Members to

Confirm Prior to Accepting the Report

UNCLASSIFIED

11

DCARC: Step 1

•SRDR status list
sent to SURF Team
Coordinator

SURF: Step 1

•SRDR status list
distributed to
Primary and
Secondary POCs

SURF: Step 2

•Conduct V&V
reviews by
populating MS
Excel question
template

SURF: Step 3

•Provide completed
V&V question
templates back to
DCARC

DCARC: Step 2

•Combine SURF
and DCARC
comments

•Coordinate
comment resolution
with submitting
organization

Database: Step 1

•Adjudicated SRDR
sent to NAVAIR 4.2
for data entry into
DACIMs dataset

•Note: Future
database(s) will be
hosted via CADE

1st week of

every month

+2 Days

+ 13 Days

NLT

+ 14 Days

Purpose of SURF Process: To provide completed V&V checklists to DCARC within 2 weeks of request

Important Note: CADE is developing relational databases for new DID formats. Over time, data entry will be automated. Until that time,

manual data entry continues by NAVAIR 4.2 team for only the development format. Please refer to V&V guide for additional automation

details and future data quality initiatives

Varies by

Contractor
Varies by No.

Submissions

UNCLASSIFIED

12

• Login to CADE

− http://cade.osd.mil/

• Navigate to DACIMs

• Select “SRDR Data Library”

from folder tree on left side of

screen

• Filter by “Report As Of Date” to

download latest version of

dataset

• Database to be updated in

CADE by end of June 2017

• Quarterly updates to database

after June release

Question: Where does SRDR data go after SURF Review?

Answer: Once SRDR record has been accepted, Data is entered into SRDR dataset posted to CADE>DACIMs web portal

Question: Who enters the data into the dataset?

Answer: Currently members from NAVAIR 4.2 enter data to SRDR dataset (10+ years of experience). Future data entry is planned to

be automated using .XML schemas linked to latest DID formats

http://cade.osd.mil/
http://cade.osd.mil/

UNCLASSIFIED

• SRDR database is available to Government analysts with access to the CADE portal

– This dataset is the authoritative source for SRDR data (10+ years of uploads)

• Data is not automatically considered “Good” for analysis

• SURF team may recommend DCARC not accept a submission due several data quality

concerns outlined in the V&V guide. Examples include:

– Roll-up of lower level data (Did not want to double count effect)

– Significant missing content in hours, productivity, and/or SLOC data missing

– Interim build actual that is not stand alone

– Inconsistencies or oddities in the submit

– Additional reasons discussed in the V&V guide

13

Data Segments Dec-07 Dec-08 Oct-10 Oct -11 Aug-13 Apr-14 Apr-15 Dec-16 Jun-17

CSCI Records 688 964 1473 1890 2546 2624 2853 3487 3583

Completed program or build 88 191 412 545 790 911 1074 1326 1391

Actuals considered for analysis (e.g.,

“Good”)
0 119 206 279 400 403 682 829 974

Paired Initial and Final Records 0 0 78 142 212 212 212 240 271

UNCLASSIFIED

• Prior to SURF process, only 15% of SRDR data was considered “Good”

• After one+ year of SURF reviews, ~24% of data has been tagged as “Good”

• Currently, ~27% of the data had been tagged as “Good”

• Army team currently working to review historical data. Once completed, “Good” percentage will likely

increase to ~31%

14

1890

2546 2624
2853

3487 3583

279
400 403

682
829

974

0

500

1000

1500

2000

2500

3000

3500

4000

11-Oct 13-Aug 14-Apr 15-Apr 16-Dec 17-Jun

Total Records (e.g., CSCIs) Actuals considered for analysis (e.g., “Good”)

SURF Team Combined With V&V Guide and DCARC

Have Significantly Improved Software Data Quality

UNCLASSIFIED

15

• Recurring SURF team meetings kicked off on 23 June 2015
– Group includes ~19 Government team members from across the DoD

– Has received very positive feed back from DoD cost estimation community, DCARC analyst(s), and even program

office communities since inception

– Completed initial version of SRDR V&V guide March 2015

– Initiated SURF Initial team training using draft V&V guide June 2015

– Completed development of SURF team charter July 2015

– During training period, SURF generated 483 V&V comments provided to DCARC (June 2015 to March 2016)

– Completed official SURF kickoff with DCARC and published V&V guide March 2016

– After training period, formal SURF process generated 889 V&V comments (March 2016 to December 2016)

– Concluding CY16, SURF team generated 1,372 V&V comments from 92 SRDR submissions (1,282 during CY16)

• Current Status
– CY17 represents first full year of official SURF reviews using published V&V guide

– Team recently kicked off effort to update existing V&V questions to align with the latest SRDR DID

– Co-chaired Collaborative Cost Research Group (CCRG) focused on increasing “Good” SRDR records (March 2017)

– Continued process improvement efforts to maintain efficient and effective process

– Working with DCARC to develop SURF User Interface within CADE

V&V Comments Have Significantly Improved SRDR Data Quality

UNCLASSIFIED

16

UNCLASSIFIED

Question ID Question from V&V Guide Template N(No) N(Yes) N(N/A) N(No Resp.)

1.5.1.1 Does the submission clearly illustrate the number of Inherited, Added, Modified, Deleted, and Deferred requirements for both internal and external categories? 31 0 1 0

1.5.2.16
If COTS or GOTS items have been included within the submission, has the submitting organization provided the SLOC total required to integrate the identified

COTS/GOTS product (i.e. Glue code)?
28 0 4 0

1.5.1.2 Has the submitting organization separated the provided requirements by Security, Safety, and Privacy or Cybersecurity? 26 1 5 0

1.5.2.4

Did the submitter us the Aerospace-approved version of the University of Southern California (USC) Center for Systems and Software Engineering (CSSE) Unified

Code Count (UCC) tool to count the provided SLOC totals? If not, was the name of the code counting tool used by the submitting organization included within the

supporting comments section and/or data dictionary?

25 6 1 0

1.2.5 Is the system description been included within the submission? 24 8 0 0

1.2.2 Has the Major Defense Acquisition Program (MDAP) or Major Automated Information System (MAIS) designation been listed? 20 2 10 0

1.3.2.3 Has the state of development been identified (For example: Prototype, Production Ready, or a mix of the two)? 19 11 2 0

1.5.4.2 Has the priority level for each category of software defects been provided? 18 9 5 0

1.1.9
Is it clear if the information represents a Technology Demonstration (TD) or Engineering and Manufacturing Development (EMD) phase if the program is in that stage

of development?
17 8 7 0

1.5.2.13 Has the contractor or submitting organization provided the name of the software products that have been referenced to generate the provided reuse SLOC totals? 17 14 1 0

1.5.4.1 Has the submitting organization provided a breakout of the number of software defects Discovered, Removed, and Deferred? 17 10 5 0

1.7.2 Has the submitting organization clearly stated if the provided schedule data was reported as estimated, allocated, or actual results? 16 16 0 0

1.2.16 Is the specific U.S Military service branch or customer identified (For example: Navy, Air Force, Army, prime contractor, etc.)? 15 14 3 0

1.3.1.1 Does the SRDR submission, comments section, or data dictionary include a clear system level functional description and software operational overview? 15 17 0 0

1.2.6 Have the program phase and/or milestone been included within the report (for example: Pre-A, A, B, C-LRIP, C-FRP, O&S, etc.)? 14 18 0 0

1.3.2.1 Does the SRDR data dictionary include a clear system-level functional description and software operational overview? 14 17 1 0

1.2.19 Has the contract Period of Performance (PoP) been identified? 13 19 0 0

1.2.23
Does the submission include adequate detail within the comments section to support analysts who may reference the submission sometime in the future (For

example: Provide context for analyzing the provided data, such as any unusual circumstances that may have caused the data to diverge from historical norms)?
13 18 1 0

1.3.3.3 If an upgrade, does the SW sizing reflect significant reuse or modification SLOC totals when compared to New code? 13 16 2 1

1.4.5

Does the peak headcount make sense against the reported schedule and hours? A simple test is to divide the total reported hours by the schedule months and then

convert the resulting average monthly hours into an average Full Time Equivalent (FTE) count using the reported hours in a man-month. The peak headcount must

be higher than this FTE monthly average. At the same time the peak headcount should not be wildly disproportional to that average either.

13 17 1 1

1.5.2.10 Were code adaptation factors reported (percent redesign, recode, reintegration)? Do they appear to be unique for each CSCI, or are they standard rules of thumb? 13 4 15 0

1.2.17
Has the specific contract type been identified? For contracts, task orders, or delivery orders with multiple CLINs of varying contract types, the Contract Type reporting

should be the one associated with the plurality of cost.
12 20 0 0

1.2.22
Has the funding appropriation been identified (for example: Research, Development, Test and Evaluation (RDT&E), Procurement, Operation and Maintenance

(O&M), Foreign Military Sales (FMS), etc.)?
12 20 0 0

1.2.4
Has the Defense material item category been provided in accordance with MIL-STD-881C guidance (for example: Aircraft, radar, ship, Unmanned Ariel Vehicle (UAV)

system)?
12 12 8 0

1.3.3.5 Has the development method also been identified (for example: Structured Analysis, Object Oriented, Vienna Development, etc.)? 12 20 0 0

1.6.2
Was effort data reported as estimated or actual results? If the submission includes estimated values and actual results, does the report include a clear and

documented split between actual results and estimated values?
12 18 2 0

UNCLASSIFIED

Question ID Question from V&V Guide Template N(No) N(Yes) N(N/A) N(No Resp.)

1.2.12 Is the contract number reported? 0 32 0 0

1.2.20 Has the report type been identified (for example: Initial, Interim, or Final)? 0 32 0 0

1.2.7 Has the contractor or organization that performed the work been identified? 0 32 0 0

1.2.21 Is there a single submission Point of Contact (POC) and supporting contact information included within the report? 3 29 0 0

1.7.1 Has schedule data been included in the submission? 3 29 0 0

1.7.4 Is schedule data broken out by SRDR activity? 3 29 0 0

1.1.2 Does the report reference the CSDR Plan? 4 28 0 0

1.2.1 Has the program name been identified? 4 28 0 0

1.5.2.1 Was the primary programming language reported? 4 28 0 0

1.5.2.6
Are the SLOC counts for different types of code (e.g., new, modified, reused, auto-generated, Government-furnished, and deleted) separated or are they mixed

together?
4 28 0 0

1.6.3 Is the effort data reported in hours? 4 28 0 0

1.6.4 Is effort data broken out by activity? 4 28 0 0

1.6.5
Was the specific ISO 12207:2008 activities that are covered in the effort data (For example: Requirements analysis, architectural design, detailed design,

construction, integration, qualification testing, and support processes) clearly discernable?
4 28 0 0

1.1.6 Is there an easily identifiable event associated with the submission (for example: Contract Award, Build 2 Release, Build 1 Complete, Contract Complete, etc.)? 5 27 0 0

1.6.1 Was effort data reported for each CSCI or WBS? 5 27 0 0

1.2.14
Is the software process maturity and quality reporting definition provided (For example: Capability Maturity Model (CMM), Capability Maturity Model Integration

(CMMI), or other alternative rating)?
4 27 1 0

1.7.3 Has schedule data been reported in number of months from contract start or as calendar dates? 3 27 2 0

1.2.13 Are precedents reported and consistent from submission to submission? 1 27 4 0

1.3.3.4 What precedents or prior builds are identified to give credibility to the upgrade designation? 1 27 3 1

1.3.3.2 Has the contractor indicated whether the software is an upgrade or new development? If not, why not? 6 26 0 0

1.4.3 Does the data dictionary define what the skill level requirements are, and is the contractor adhering to that definition? 6 26 0 0

1.2.15 Is the Process Maturity rating reported with an associated date, and has it changed from a prior submission? 3 26 3 0

1.2.10 Has the contractor or submitting organization illustrated whether they were the primary or secondary developer? 7 24 1 0

1.6.6
Were common WBS elements/labor categories such as System Engineering (SE), Program Management (PM), Configuration Management (CM), or Quality

Management (QM) been broken out separately?
7 24 1 0

1.7.5
Does the report include unique schedule start and end date values? For example, do multiple records have the same schedule data, e.g., same calendar dates for

multiple WBS/CSCIs or builds?
7 24 1 0

1.2.3 Is the Prime Mission Product (PMP) name been clearly identified (for example: most current official military designation? 5 24 3 0

UNCLASSIFIED

Question ID Question from V&V Guide Template N(No) N(Yes) N(N/A) N(No Resp.)

1.5.3.2
If function points have been provided has the submitting organization clearly illustrated the function point count type (For example: Enhancement Project, Application,

or Development Project)?
0 0 32 0

1.5.3.3
Has the submitting organization provided the number of Data Functions and Transactional Functions (For example: Internal Logic Files, External Interface File,

External Inquiries, External Inputs, and External Outputs)?
0 0 32 0

1.5.3.4 Has the submitting organization included the Value Adjustment Factor? 0 0 32 0

1.5.3.5
If the submitting organization has provided sizing metrics using the Reports, Interfaces, Conversions, Extensions, Forms, and Workflows (RICE-FW) convention, has

the complexity of each RICE-FW category been provided?
0 0 32 0

1.8.1 FACH: Has a description been provided that describes which ISO 12207:2008 elements have been included within the provided total? 1 0 31 0

1.8.2 FACH: Do sub-element FAC values sum to the parent FAC total value? 1 0 31 0

1.8.3 If the report is a final report, does the provided ATD total match the provided FAC total? 1 0 31 0

1.1.1 Is the submission compliant with the CSDR Plan, i.e., a comparison of the submission to the plan requirement? 1 1 30 0

1.5.3.1
Were SLOC counts reported, or were other counting or sizing metrics used (e.g. function points, use cases, rung logic ladders, etc.)? If so, has the submitting

organization obtained the appropriate authorization to report non-SLOC based sizing within the corresponding CSDR plan?
0 3 29 0

1.6.17 If subcontractor hours have not been provided, did the reporting organization provide subcontractor dollars? 2 1 29 0

1.5.2.17

If COTS or GOTS integration or glue code has been included within the submission, does the total seem realistic when compared to the total SLOC included in the

CSCI or WBS element (For example: COTS integration code equals 500 KSLOC and the total SLOC for the specific CSCI or WBS element equals 150 KSLOC)?

note: this scenario sometime occurs when the submitting organization counts the total SLOC of the specified COTS or GOTS product vice the integration or glue

code required to integrate the product.

3 0 28 1

1.6.9
Do the children or lower-level WBS/CSCI elements add up to the parent? If not, is there effort that is only captured at a higher-level WBS/CSCI level that should be

allocated to the lower-level WBS/CSCI elements?
5 3 24 0

1.2.18 Has the total contract price been identified? 9 0 23 0

1.5.1.3
Do the number of requirements trace from the parent to the children in the WBS? If not, this could imply that some portion of the software effort is only captured at

higher-level WBS/ CSCI elements and should be cross checked.
3 4 23 2

1.5.2.9
For a Final report does the size look realistic? For example: is all of the code rounded to the nearest 1000 lines, or does the dictionary indicate that they had difficulty

counting code that may have come from a subcontractor?
1 9 22 0

1.1.7
If there are prior submissions, is this submission an update to a prior submission or a new event? If the submission is an update to an existing submission, does the

latest submission clearly describe what report the prior submission is linked to?
2 8 21 1

1.2.11 If effort was outsourced, has the outsourced organization been provided? 4 7 21 0

1.6.7 Is there an explanation of missing activities included within the supporting SRDR data dictionary? 7 4 21 0

1.1.8
If a prior submissions exists, is the information that has changed readily identifiable and a reason for the change provided (either in the data dictionary or comments

section)?
5 6 20 1

1.4.4 Does the skill mix make sense relative to the complexity of the code (unusual amount of very low or very high skill mix, for example)? 0 12 20 0

1.5.4.3

If the report is an interim or final submission, has the number of Discovered, Removed, and Deferred defects changed from the previous submission? If significant

changes have occurred, does the supporting comments section and/or data dictionary provide details regarding what drove the significant change in product quality

metrics?

10 2 20 0

1.6.12
Does the submission include unique values for each of the lower-level CSCI or WBS elements? For example, do multiple related records have the same effort data

(i.e. activity effort is repeated or total effort is repeated)?
6 6 20 0

1.4.2 If there was a prior submission, has the skill mix changed dramatically and, if so, is there an explanation why? Conversely, did it remain unchanged? If so, why? 8 4 19 1

1.5.2.14 When subcontractor code is present, is it segregated from the prime contractor effort, and does it meet the same criteria for quality as the prime’s code count? 6 7 19 0

UNCLASSIFIED

20

• V&V comments are generated when SURF members answer a question with “No”

• Common trends for “No” responses:

– Reports not including all types of requirement counts (e.g., new, modified, inherited, deleted, cybersecurity, etc.)

– Reports not including COTS/GOTS “glue code” Software Lines of Code (SLOC) totals

– Reports not including SLOC counts using USC Unified Code Count (UCC) tool

– Reports not including software defect counts

– Reports not including a subset of required metadata (e.g., TD, EMD, Prototype, Service, Milestone, Contract Type, etc.)

• Common trends for “Yes” responses:

– Reports include a subset of metadata (e.g., contractor, contract number, report type, report POC, program name, etc.)

– Reports typically have SLOC counts broken out by new, modified, reuse, auto, and deleted

– Reports typically include primary language type designation

– Reports typically include “Effort” broken out by activity

• Common trends for “N/A” responses:

– Reports typically do not include “Forecast At Completion (FAC)” values

– Reports typically do not include non-SLOC sizing metrics (Function Points, RICE-FW, etc.)

– SURF analyst typically does not have access to corresponding CSDR plan (Working with CADE to develop SURF portal)

UNCLASSIFIED

• Currently, SURF members are updating or creating draft question lists to account

for new DIDs for Development, Maintenance, and ERP

– Updates to the development question lists include improvements to the list from lessons learned

over the previous year

• Draft Question lists will then to be sent out to a larger SRDR-focused team members

to ensure questions list are reasonable and that they address quality data concerns

– Important to keep question lists to a reasonable size for continued SURF success

• V&V guide and question templates to be updated to incorporate new questions as

well as other lessons learned

• Updated V&V to larger SRDR working group and senior management for final

comments/feedback

• Send Updated V&V guide to OSD for final PAO approval and posting to CADE

21

UNCLASSIFIED

22

• SURF is focused on improving data quality and helping support robust

Government review process

• We would like to thank all of the DoD and Non-DoD individuals who have

commented, participated, and provided feedback throughout the past few

years

• Please feel free to use the contact information below if you would like

more information regarding SURF, the SRDR V&V Guide, or checklist

Marc Russo

Naval Center for Cost Analysis (NCCA)

NIPR: Marc.russo1@navy.mil

Ron Cipressi

Air Force Cost Analysis Agency

NIPR: Ronald.p.cipressi.civ@mail.mil

Nicholas Lanham

Naval Center for Cost Analysis (NCCA)

NIPR: Nicholas.lanham@navy.mil

Dan Strickland

Missile Defense Agency (MDA)

NIPR: Daniel.strickland@mda.mil

mailto:Marc.russo1@navy.mil
mailto:Ranae.p.woods.civ@mail.mil
mailto:Nicholas.lanham@navy.mil
mailto:Daniel.strickland@mda.mil

© 2017. All rights reserved.

Jairus Hihn
Jet Propulsion Laboratory, California Institute of Technology

Expanding Our Estimation Tool Set:

Formalizing analogy based cost estimation

August 22-24, 2017

Software and IT-CAST

First Things First - The Team

• JPL/California Institute of Technology

Dr. Jairus Hihn

Elinor Huntington

Alex Lumnah

Michael Saing

Tom Youmans

• NASA Strategic Investment Division

James Johnson

• North Carolina State University (Original Research Team)

Dr. Tim Menzies

George Mathew

2

Contact:
Dr. Jairus Hihn, jairus.m.hihn@jpl.nasa.gov
James K. Johnson, james.k.johnson@nasa.gov

mailto:jairus.m.hihn@jpl.nasa.gov
mailto:james.k.johnson@nasa.gov

Acknowledgements

• Many individuals have contributed or assisted with this work:
– JHU APL: Nicole Powers-Krepps, Sally Whitley, Meagan Hahn, Christian

Patton

– NASA GRC: Elizabeth (Betsy) Turnbull, Chris Blake, Tom Parkey, Bob Sefcik

– NASA HQ: Cris Guidi, Charley Hunt, Doug Comstock, Eric Plumer

– NASA GSFC: Stephen Shinn, Tamra Goldstein

– NASA ARC: Tommy Paine

– Special thanks to Julie McAffee and Mike Blandford of ONCE team

3

Some Stories….

Isn’t software maintenance free? It was free at the university research
programs!

 - Program Office Manager

But we are just cloning the last mission so flight software budget is
basically ZERO, right! (Oh and all the instruments/sensors have been
changed)

 - A Different Program Office Manager

My project is special and I do not need to follow the standard WBS. By
the way can we use Mission X data to help us cost my mission.

 - Project Manager

4

5

Why explore alternative modeling methods?

• For most of our history the cost community has relied
upon regression based modeling methods

• Sometimes regression breaks down

• Regression methods have the underlying assumption
of clean and complete data with large sample sizes

• Guess what - Most cost data suffers from sparseness,
noise, and small sample sizes

• The point is we need more tools in our toolkit

Example of Classic Breakdown
with Regression

Anscombe’s Quartet

6

Anscombe’s Quartet

Reference: Anscombe, F. J. (1973). "Graphs in Statistical Analysis". American Statistician 27 (1): 17–21. JSTOR 2682899.
Can also be found at http://en.wikipedia.org/wiki/Anscombe%27s_quartet

 All four of the displayed
plots have virtually
identical statistics

 Means, Medians,
Variances

 Regression line, R2,

F and T tests

 But visual inspection
clearly shows they are
very different

http://en.wikipedia.org/wiki/Frank_Anscombe
http://en.wikipedia.org/wiki/American_Statistician
http://en.wikipedia.org/wiki/JSTOR
http://www.jstor.org/stable/2682899

Anscombe’s Quartet – Using MRE

• Plotting the absolute values of the relative error it is easily seen
that Model 3 fits its data best just as intuition would indicate
– MRE = Magnitude of Relative Error, abs(Predicted – Actual)/Actual

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0	 2	 4	 6	 8	 10	 12	

Model	1	

Model	2	

Model	3	

Model	4	

Model 3 fits its

data the best

 MRE can distinguish between the models

11

Formal Analogy and Bayesian Models are a Natural Next Step in the
Evolution Cost Modeling and Analysis

9

10

What We Learned from Methodology

• There are a variety of models whose performance are hard to

distinguish (given currently available data) but some models are
better than others

• If one has sufficient data to run a parametric model such as
COCOMO then the best model has repeatedly been found to ne the
parametric model

• When insufficient information exists then a model using only
system parameters can be used to estimate software costs with
‘acceptable’ reduction in accuracy. The main weakness is the
possibility of occasional very large estimation errors which the
parametric model does not exhibit.

• A major strength of the nearest neighbor and clustering methods is
the ability to work with a combination of symbolic and numerical
data

• While a nearest neighbor model performs as well or better as
clustering based on MMRE, clustering handles outliers better and
provides a structured model that supports cost analysis and not
just prediction

11

	

Estimation Model

Median

MRE

(MMR
E)

25
th

Percent

ile

75
th

Percenti

le

Knn1

(Nearest Neighbor)

32% 14% 80%

PEEKING2

(Spectral
Clustering)

32% 16% 97%

COCOMO2 36% 22% 55%

Mission Type
Summary Table

38% 14% 106%

COCONUT 44% 32% 62%

 Negative results for software effort Estimation, Empirical Software Engineering, Nov 2016
Menzies, Yang, Mathew, Boehm, Hihn

• To compare models we use MRE metrics from leave one out validation
• COCOMO II out of the box performs well against parametric and non-

parametric models
• Even performs well against local calibration
• If you have enough information run a parametric model !!

Comparing Model Performance

Introduction & Background

• ASCoT is the NASA Analogy Software Cost Tool

– The purpose of ASCoT is to

• Supplement current estimation capabilities

• Be effective in the very early lifecycle when our knowledge is fuzzy

– uses high level systems information

– Usable by Cost Estimators, Software Engineers and Systems
Engineers

– Methodology handles

• small sample sizes

• noisy and sparse data

• Can also handle large data sets

– Previous research approach and activities are widely published

• ICEAA 2014, 2015

• NASA Cost Symposium 2014, 2015, 2016

• IEEE Aerospace 2016, 2017, 2018 (forthcoming)

• Numerous research publications in IEEE SW, TSE, ASE, Empirical
Software Engineering by Professor Tim Menzies et.al.

12

13

We Are Estimating With minimum Inputs

Cluster and KNN algorithms use

• Spacecraft Type

• Destination

• Number of Instruments

• Number of Deployables

• Software Inheritance Categories

• Mission Size ($) Categories

Regression Model uses

• Spacecraft Development Costs

• Number of Instruments

Rm: HST (Hubble, 1830), Near (48)

This!

Rovers

Large Outer Planets

14

Model MRE Performance

15

MRE Comparison Based on Test Cases

ASCoT

Prototype ASCoT Beta ASCoT

1 0% 1% 2%

2 1% 3% 3%

3 3% 3% 7%

4 4% 10% 8%

5 4% 22% 15%

6 35% 23% 27%

7 45% 29% 32%

8 79% 35% 35%

9 101% 37% 37%

10 102% 51% 51%

11 192% 54% 54%

12 506% 175% 107%

Median

MRE 40% 26% 30%

Average

MRE 89% 37% 32%

Model Estimation Error, based on MRE, is steadily improving

In
n

e
r

Q
u

ar
ti

le

By gradually increasing the granularity of our clusters, while maintaining
robustness to avoid overfitting, we were able to find logical separation
between groupings of missions

Increasing granularity

A
ll

m
is

si
o

n
s

Missions

Rovers

Missions

Large
Outer

Planetary

Rovers

Planetary

Large
Outer

Planetary

Rovers

Earth &
Inner

Planetary

Planetary

Large
Outer

Planetary

Rovers

Earth &
Inner

Planetary

Earth

Planetary 1

Large Outer
Planetary

Rovers

Earth &
Inner

Planetary

Earth

Landers

Planetary 2

Planetary 2

Large
Outer

Planetary

Rovers

Earth &
Inner

Planetary

Earth

Planetary 1

Clustering Analysis 2

16

Number
of
Clusters

2 3 4 5 6 7 8

Cluster Parameter
Variation

NASA
Analogy Software Estimation Tool

18

Conclusion: Put It In A Tool

j p l . n a s a . g o v

“ASCoT” Key Analysis Components

19

• Cluster & Regression Analysis components listed rely on high level Mission
Descriptors such as # of Instruments and Mission Type

• COCOMO II is a reproduction and uses traditional inputs

Cluster Analysis

• Clustering

• Development
Effort
Estimate

Regression
Analysis

• Linear
Regression

• Development
Cost Estimate

COCOMO II

• Verified
Reproduction

• Cost/Effort

Knn Analysis

• Nearest
Neighbor

• Development
Effort and
SLOC Estimate

Analogy

Data Sources

• Where the data came from
– NASA CADRe (When it exists and is usable)

• Cost Analysis Data Requirements archived in ONCE database

– NASA 93 - Historical NASA data originally collected for
ISS (1985-1990) and extended for NASA IV&V (2004-
2007)

– Contributed Center level data

– NASA software inventory

– Project websites and other sources for system level
information if not available in CADRe

20

1
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

1

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Why Does Software Cost So Much?

Toward a Causal Model
© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Software and IT-CAST

Why Does Software Cost So Much?
Toward a Causal Model

23 August 2017

Mike Konrad

Robert Stoddard

David Zubrow

2
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

2

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

PSPSM is a service mark of Carnegie Mellon University.

DM17-0537

3
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

3

Outline

• What is causal learning and modeling,

and why do we care about It?

• Our technical approach

• Initial Results

• Conclusions

4
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

4

Our Project: Bottom Line Up Front

 If you are interested in this approach, let’s work together.

Goal

• Demonstrate the benefit of causal

modeling to the software cost

domain

• Identify and quantify a causal

network of factors that drive

software effort and schedule

Actionable intelligence

• Enhance program control of

software cost throughout the

development and sustainment

lifecycles

• Inform “could/should cost” analysis

and price negotiations

• Improve contract incentives for

software intensive programs

• Increase competition using effective

criteria related to software cost

5
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

5

Why do we care about causal modeling?

Establishing causation with observational data remains a vital need and

a key technical challenge, but is becoming more feasible and practical.

Proactively controlling software costs requires

knowing which of our “independent factors” actually

cause outcomes to change in a predictable manner.

Just as correlation may be fooled by
spurious association, so can regression

We must move beyond correlation to
causation, if we want to make use of
cause and effect relationships

Today, we can garner evidence of
causation without the expense and
challenge of conducting a
controlled experiment

6
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

6

Structural Equation Models (1930’s)

Sewall Wright Path Models (1920’s)

Social Science Path Models (1960’s)

Bayesian Networks (1980’s)

Pearl’s Probabilistic Reasoning (1988)

Pearl’s 1st Edition Book on Causality (2000)

Glymour & Spirtes et al 1st Edition Book on Causality (1988)

Glymour & Spirtes et al 2nd Edition Book

on Causality (2001)

Pearl’s 2nd Edition Book on

Causality (2009)

Morgan Handbook

Social Science Causal

Inference (2014)

Morgan Counterfactuals

& Causality (2014)

Morgan Counterfactuals &

Causality (2007)

2010 2005 2000 1995 1990 1985 1980 1930

Significant Progress Toward Practicality

TETRAD – An Open Source Tool for Causal Learning

Carnegie Mellon University
http://www.phil.cmu.edu/tetrad/

University of Pittsburgh
http://www.ccd.pitt.edu/

For video tutorials from 2016 summer short course:

http://www.ccd.pitt.edu/training/presentation-videos/

http://www.phil.cmu.edu/tetrad/
http://www.phil.cmu.edu/tetrad/
http://www.phil.cmu.edu/tetrad/
http://www.phil.cmu.edu/tetrad/
http://www.ccd.pitt.edu/
http://www.ccd.pitt.edu/
http://www.ccd.pitt.edu/training/presentation-videos/
http://www.ccd.pitt.edu/training/presentation-videos/
http://www.ccd.pitt.edu/training/presentation-videos/

7
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

7

Basic Technical Approach

Causal Model (DAG)

Estimated Model (SEM)

using Tetrad, which

implements a variety of

algorithms

Causal Discovery

using domain

knowledge and prior

scholar publication

Formulate Hypotheses

Prior Knowledge

Observational Data

8
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

8

Integrating Models

 COCOMO Data

 Vendor 1 Data

 Vendor 2 Data

 Vendor 3 Data

 SRDR Data

 TSP/PSP Data

 CSIAC Data

Compressed
Schedule

Language

Tools

Experience

Effort

Compressed
Schedule

Language

Tools

Experience

Effort

Compressed
Schedule

Language

Tools

Experience

Effort

Tetrad

Learning

Compare

Integrate

Estimate

Strength

Actionable Causal Models

~ 60 unique

cost factors

15+ cost

relationships

to evaluate

Module Effort = f(factor1, factor2, factor3)

Module Post-Development Quality = g(factor1, factor4, factor5)

High-Reliability Module Cost = h(factor4, factor6, factor7)

9
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

9

A familiar example of a causal model

Hard to find data sources to actually

estimate the entire model

Consequently harder to empirically

establish the causal relationships

Causal modeling methods allow for

the integration of partial models

Opportunity for empirical support and

refinement

Technical

Adequacy

Development

Performance

Growth and

Stability

Resources

and Cost

Product

Quality

Customer

Satisfaction

Schedule and

Progress

Example: PSM Performance Analysis Model

10
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

10

Explaining Final Effort and Duration (Initial Results)1

181 pairs of matched initial-final SRDR reports reduced to 134 (complete Req…INT data).

In
it
ia

l
S

R
D

R

F
in

a
l
S

R
D

R

In
it
ia

l
S

R
D

R

11
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

11

Explaining Final Effort and Duration2

Duration

LOC

LOC

LOC

Duration

Team Exp;

Peak Size

Program

Type

Change

Reqts

Ct

Reqts

Ct

E F F O R T

Both this chart and previous analyzed with PC algorithm with Alpha set to .001.

12
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

12

What Do These Initial Results Suggest?

Effort estimates for Req, Arch, Code, INT directly influence effort actuals.

• Not so for Duration

There are other cases where estimates of an attribute do not directly

influence actuals for that attribute, suggesting challenges to estimation.

Total effort actual

• may be directly influenced by Req effort and Code effort actuals

• not directly influenced by Arch effort actual

• directly influences INT effort actual (after accounting for influence of

initial INT effort estimate). Evidence of effort compression?

Cautions

• Double-headed edges suggest unmeasured confounders (factors that

are a common cause of factors connected by the edge).

• Undirected edges suggest insufficient data.

13
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

13

Explaining Size and Defect Density – Need to Drill Deeper?

Historical Programmer

Capabilities

Effort

Defect Injection

Defect Removal

Outcomes

Data from 975 programmers during PSP training

14
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

14

Conclusions

 We welcome collaborators interested in using

these methods and tools.

Causal learning:

• has come of age from both a

theoretical and practical tooling

standpoint

• may be performed on data

whether it be derived from

experimentation or passive

observation

Causal models:

• help separate true causes from

spuriously-correlated factors

• help identify when unknown

causes may likely exist

• lend themselves to actionable

intelligence better than models

based on correlation

15
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

15

QUESTIONS?

16
Why Does Software Cost So Much?

Toward a Causal Model

August 2017

© 2017 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

16

Contact Information

Points of Contact

Robert Stoddard

rws@sei.cmu.edu

Mike Konrad

mdk@sei.cmu.edu

Dave Zubrow

dz@sei.cmu.edu

William Nichols

wrn@sei.cmu.edu

David Danks

ddanks@cmu.edu

Kun Zhang

kunz1@cmu.edu

U.S. Mail

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612, USA

Web

www.sei.cmu.edu

www.sei.cmu.edu/contact.cfm

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

mailto:rws@sei.cmu.edu
mailto:mdk@sei.cmu.edu
mailto:dz@sei.cmu.edu
mailto:rbrown@sei.cmu.edu
mailto:rbrown@sei.cmu.edu
mailto:kunz1@cmu.edu

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc. I 1

Reliable Non-Design, Code, Test,

and Integration Cost Relationships

Software and IT-CAST Meeting

Lockheed Martin Global Vision Center

Arlington, VA

2017 Software and IT-CAST Meeting

Jeremy Goucher I Brittany Staley August 2017

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• Introduction

• Data

• Generalized Methodology

• Program Management

• System Engineering

• Integrated Logistics

• System Integration

• Modeling and Simulation

• Training and Test Sites

• NDCTI vs DCTI Phasing

• Conclusion

Agenda

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• Non-Design, Code, Test, and Integration (NDCTI) costs can make up more

than 50% of the total cost estimate

• NDCTI elements are typically estimating using cost relationships (CRs)

derived by parametric methods as functions of DCTI cost

− Increase in DCTI implies larger team, increased complexity, increased

funding, increased contracting actions, all translating to increases in many

NDCTI elements

• New CRs are needed on a routine basis to ensure models are consistent with

current trends

• NDCTI costs are grouped into six major categories:

 - Project Management (PM) - System Integration (SI)

 - System Engineering (SE) - Modeling and Simulation (MS)

 - Integrated Logistics Support (IL) - Training and Test Sites (Sites)

Introduction

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• 12 years of data ending in 2016

• All data normalized to BY17$s

• 3 completed projects, 1 project 75% complete

− All results based on 3 completed projects unless otherwise noted

− Fourth project presented anecdotally

• Software sizes range from 200k to 1.4M equivalent source lines of code

(ESLOC)

• Field testing, which can have a wide variety of requirements, are not included

in analysis

− Cost estimates for field tests are based on unique test requirements for

each test event

Data

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• Insufficient data points for regression analysis

‒ 2 degrees of freedom

• All means, standard deviation, and coefficient of variation (CV) based on

three completed programs

• Fourth program assumptions

‒ 100% DCTI completed in first 75% of program schedule

‒ 85% of PM, SE, ILS cost incurred in first 75% of program schedule

‒ SI, MS, Sites ETC minimally analyzed

Generalized Methodology

𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑁𝐷𝐶𝑇𝐼 $

𝐷𝐶𝑇𝐼 $

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• PM Includes

− business and financial management

− quality assurance standards and adherence

− data and configuration management

− program planning

− program evaluation

• Fourth project currently 13.14% of DCTI; program 75% complete

− PM costs continuing to accrue; DCTI complete

− Estimated PM CR at completion: 15.46%

Program Management

𝜇 = 15.31%
𝐶𝑉 = 5.7%

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• Phasing Analysis

− PM phasing shows long ramp up, some level of effort for a short

duration (if at all), and steep drop at the end

− Does not reflect markers of fixed, or level of effort, type cost

Program Management Phasing

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• SE comprises engineering oversight and support functions including:

− system level coordination

− planning and integration

− special projects

• Fourth project currently 31.89% of DCTI; program 75% complete

− SE costs continuing to accrue; DCTI complete

− Estimated SE CR at completion: 37.52%

System Engineering

𝜇 = 36.48%
𝐶𝑉 = 8.0%

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• Phasing Analysis:

− Shows markers consistent with variable cost phasing

− Ramp up, peak, and ramp down more consistent with DCTI

phasing

System Engineering Phasing

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

Integrated Logistics

• IL includes:

− oversight and coordination of IL requirements and processes

− management of supply chain and spares

− development of technical manuals

− training support

• Fourth project currently 0.77% of DCTI; program 75% complete

− IL costs continuing to accrue; DCTI complete

− Estimated IL CR at completion: 0.91%

• Evaluation of CV

− IL is very small portion of total cost

− Assuming NDCTI represents 50% of total cost, ILS error likely

represents error in estimate between 0.5% and 2%

𝜇 = 2.85%
𝐶𝑉 = 62.2%

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• Phasing Analysis:

− Variable costs with no common spend pattern

− Possibly includes “on-demand” or schedule based services or

products

Integrated Logistics Phasing

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• SI includes:

− System level requirements

− multi-element integration and test

− test plans and procedures

− integration oversight

• Evaluation of CV:

− DCTI cost is not a very good basis of estimate for SI cost

− High productivity reduces DCTI cost, but likely has no impact on

the effort to integrate the various elements into a single program

System Integration

𝜇 = 20.91%
𝐶𝑉 = 91.9%

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• SI measured as a function of ESLOC

− Removes DCTI productivity from the equation

− Large ESLOC may relate to large integration efforts

• Findings

− To avoid potential disclosure of proprietary information, results of SI as a

function of ESLOC cannot be shown

− Two of three completed programs have very similar $ / ESLOC cost

− Incomplete program on track to be similar to the two programs with

similar $ / ESLOC ratios

• Other considerations:

− Possible SI could be analyzed in groups based on similar technical

specifications

System Integration (Cont’d)

𝑆𝐼 = 𝑓(𝐸𝑆𝐿𝑂𝐶)

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• Phasing Analysis

− SI phasing displays ramp up/ramp down with peaks and valleys

− More cost in the second half than the first half

System Integration Phasing

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• M&S comprises the effort to develop simulated environments within which a

computer program can be tested

• Fourth project currently 11.08% of DCTI; program 75% complete

• Evaluation of CV

− DCTI may not be a good BOE for MS

− MS effort involves developing a synthetic environment within which the

primary program can be operated and tested

− Likely requires ESLOC inputs and unique DCTI type calculations

Modeling & Simulation

𝜇 = 11.83%
𝐶𝑉 = 59.3%

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• Phasing Analysis

− The effort to development simulated environments within which a

computer program can be tested

− No obvious common pattern

− May require unique phasing based on program requirements

Modeling & Simulation Phasing

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• Sites comprises the effort to integrate, install, and test the designed

system at both training and test site facilities

• Fourth project currently 1.29% of DCTI; program 75% complete

− Sites costs typically incurred near the end of the program

− Expect fourth project final Sites cost to be in line with completed

projects

Training & Test Sites

𝜇 = 6.32%
𝐶𝑉 = 19.49%

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• Phasing Analysis:

− Sites cost phasing shows peaks and valleys

− Schedule based phasing best approach

Training & Test Sites Phasing

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• More likely variable and/or schedule based phasing than fixed, or level of

effort, type phasing

• As a composite, NDCTI cost tracks closely to DCTI cost

• Variable cost phasing may be due to corporate strategy to develop

functional teams

NDCTI vs DCTI Phasing

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc.

• Five of six NDCTI CRs recommended for general use

• SI requires additional analysis

• Cost phasing shows variable patterns rather than fixed, or level of

effort, type phasing

• Larger data set would likely improve results

Mean St. Dev. CV

Program Management 15.31% 0.87% 5.7%

System Engineering 36.48% 2.91% 8.0%

Integrated Logistics 2.85% 1.77% 62.2%

Modeling and Simulation 11.83% 7.02% 59.3%

System Integration* 20.91% 19.21% 91.9%

Training and Test Sites 6.32% 1.23% 19.4%

*Not a recommended cost relationship

Conclusion

Distribution Statement A: Approved for public

release; distribution is unlimited.

Jeremy Goucher, Brittany Staley

SW and IT-CAST Meeting 2017

Herren Associates, Inc. 21

Intro | Analyze | Assess | Allocate | Summary

Comments/Questions

Stay Connected
 linkedin.com/company/herren-associates-inc

Authors

Jeremy Goucher Brittany Staley

Phone: (202) 802 5683 Phone: (831) 236 1875

jeremy.goucher@jlha.com brittany.staley@jlha.com

About Herren

Founded in 1989, Herren Associates is an engineering and management consulting firm

with a proven record of maximizing the value of every taxpayer dollar. As trusted advisors

to federal executives, we partner with clients to drive operational improvements and

manage performance - maximizing efficiency and cost effectiveness.

Sanathanan Rajagopal

Principal Cost Consultant

Introduction to Software
Obsolescence Cost
Analysis Framework

23 August 2017
Software and IT-CAST Meeting

QINETIQ/EMEA/EO/PUB170141

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

QinetiQ Businesses

Air and Space Maritime, land and
weapons

North America

Cyber, Information &
training

OptaSense® International

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 2

QinetiQ, International Business, Advisory Services

• Over 150 highly skilled and experienced subject

matter experts

• 70%+ Professional Accreditation

• ACostE, SCAF, APM, Prince2, MSP, ICEAA

• Based across 5 UK Sites

• Deployed internationally

• Average experience of 10 years

• Over 40% PhD / MSc qualified

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 3

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ

Agenda

1 Research Aim

2 Definitions

3 Introductions

4 Cognitive Case Studies

5 Software Obsolescence Cost Analysis Framework

6 Software Obsolescence and Software Maintenance

7 Summary

8 Conclusion

4 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Research Aim

• Text

Software Obsolescence

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

“To develop a cost analysis framework to estimate the cost of

Software Obsolescence Resolution of a bespoke real-time

software in defence and aerospace”

Research Aim

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 6 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Definitions

• Text

Software Obsolescence

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence is defined as “ what happens when the original and

authorised third party ceases to provide support with regular update, upgrade, fixes

or due to the changes in target or operating environment, systems or hardware which

makes the software unusable”

 -S Rajagopal et al; (2014)

Software Obsolescence Definitions

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 8 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software maintenance is the process of managing software regularly by patching,

bug fixing, updates and undertaking major upgrade during the productive lifecycle.

Software Maintenance

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 9 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Other Definitions

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 10 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence vs Software Maintenance

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 11

Software Maintenance Software Obsolescence

Bug fixes Replacement of entire application if need be to a new

one

To address fault/Failures, security patches etc. To address the issues with the application in totality

Maintenance is the review of the stored files to ensure

they are still useable

Solves unavailability of fixes, licenses, permission and

upgrades

Software maintenance takes care of the current

versions to ensure that its up and running and meeting

the requirements

Software Obsolescence management looks forward

the industry standards and other software to continue

supportability of the software

Maintenance deals with the upgrading the software to

enhance capability

Obsolescence management deals with enforced

changes in the environment

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Introduction

• Text

Software Obsolescence

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Introduction

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 13 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

The need for a Software

Obsolescence Cost Analysis

Framework

Software Obsolescence Cost Analysis Framework

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 14 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Following process was

undertaken to develop the

Framework

Latest

Development

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Cognitive Case Study

• Text

Software Obsolescence

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

The aim of the cognitive case study is to “identify how software developers select

technologies to mitigate the effect of software obsolescence during software

development, which could then be used to inform the required resolution strategies”

Cognitive Case Study- Aim

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 16 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

• This study methodology employs the “think aloud” technique to capture the

cognitive actions of software developers.

• This requires the participant to literally say aloud everything that they thinks or does

during a controlled experiment.

• Everything that is said will be recorded (video and audio), transcribed and then

described as a “verbal protocol”.

• Anything that is written down by the participant during the experiment is collected

and analysed as a “written protocol”.

Cognitive Case Study – Methodology

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 17 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Cognitive Case Study- Participants

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 18 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Demography of participants

Name of the companies cannot be disclosed due to confidentiality agreement

Participants Company Level of Experience Years of Experience

Participant 1 Company A Novice 2

Participant 2 Company B Expert 15

Participant 3 Company C Expert 20

Participant 4 Company B Practitioner 8

Participant 5 Company D Practitioner 5

Cognitive Case Study- Analysis

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 19

0%

5%

10%

15%

20%

25%

30%

35%

Analysing Software Obsolescence problem Consulting information on Software
Obsolescence problem

Evaluating Software Obsolescence problemP
E

R
C

E
N

T
A

G
E

 O
F

 T
IM

E

S
P

E
N

T

MICRO STRATEGIES

MICRO STRATEGY

Participant 1

Participant 2

Participant 3

Participant 4

Participant 5

0%

10%

20%

30%

40%

50%

60%

Referring to technlogy knowladge Referring to technology selection Referring to an software obsolescence
strategy

Explaining effect of technology selection

P
E

R
C

E
N

T
A

G
E

 O
F

 T
H

E
 T

IM
E

MICRO STRATGIES

MICRO STRATEGY
Participant 1

Participant 2

Participant 3

Participant 4

Participant 5

0%

10%

20%

30%

40%

50%

60%

70%

80%

Top Down Selection of Technology Confirmation of the Technolgy Re-evaluating the technology selections

P
E

R
C

E
N

T
A

G
E

 O
F

 T
IM

E

MACRO STRATEGY

Macro Strategy

Participant 1

Participant 2

Participant 3

Participant 4

Participant 5

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Transcript from participants of the Cognitive Case Study

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 20

• Participant 1 “I will use this technology so that it is readily available for the

maintainers to use it in future”

• Participant 2 “I am using this approach (Technology selection) in order to reduce the

obsolescence as this technology is independent of changes in hardware”

• Participant 3 “I am using this technology because I am certain that in next 10

years there will not be a change in the hardware or system in Mod that will

make this technology selection an obsolete one”

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Process undertaken by Participants during Cognitive Experiment

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 21 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Cognitive Case Study- Findings

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 22

• There seems to be a link between the technical selection and the resolution

approach.

• Requirement should be stable to reduce the effect of Software Obsolescence

• Stable operating and target environment reduces the risk of Software Obsolescence

• Establishment of good support system reduces the Software Obsolescence risks

• Maintaining the software in house and building an in-house capability will reduce

the risk of software obsolescence, however this would be expensive.

 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Text

Software Obsolescence

Cost Analysis Framework

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence Cost Analysis Framework

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 24

 The framework has the following attributes

– This framework is in its third iterations.

– This framework’s foundation is based on the Literature Searches, Case Studies, Online

Survey results, SME Interviews and Cognitive Case Studies.

– This framework has several attributes that can be mapped across from and to, to the

software estimating principals.

– This framework looks at the Cost Risk and Uncertainty which is at its development stage.

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence Cost Analysis Framework

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 25 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence Management Level

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 26

• Software Obsolescence Management Level determines the level the current software

program/Project/team is at in managing software obsolescence.

• It provides information on the as-is state for managing Software Obsolescence

• From this process, the following should be determined
– Obsolescence Management Strategy

– Software Obsolescence Management Strategy

– Project teams approach towards software obsolescence risks

– Capacity and capability to deal with software Obsolescence

– Ability to deploy software obsolescence monitoring systems/tools if any

– Understanding obsolescence resolution strategy

– Capacity and capability to monitor software supply chain

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence Management Level

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 27 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence Management Level

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 28

• Software Obsolescence Management Level will help the Organization/Project Team understand what

they need to do get to an optimum level of Software Obsolescence Management.

• The organisations /Project team at the lowest level in Software Obsolescence Management level

deals with software obsolescence reactively and the organisations/project team at the highest level

deals with the software obsolescence proactively.

• However the organisations/project team at higher level may have a higher overhead which is suitable

for large organisations but very expensive to small to medium size organizations.

• Due to these reason organisations should undertake a sequential trade off to get optimum benefits

out of the software Obsolescence management level.

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence Resolution Approach

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 29

• Software Obsolescence Resolution Approach helps to tease out the resolution

strategy.

• The resolution approach will help in identification of the best possible resolution

techniques.

–Resolution techniques are determined based on the Project and Systems

Parameters and Software Management Level

–Resolution techniques are identified for individual software component rather than

software program as a whole.

• Software Obsolescence Resolution Approach helps the project team to compile an

appropriate software obsolescence strategy.

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence Resolution Approach

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 30

• Software Obsolescence Resolution Approach will help to identify the key cost

drivers.

• Software Obsolescence Resolution Approach will help to identify the key risk/

uncertainties around the selection of appropriate resolution approach.

• Three major types of resolution approach are identified

–Technical Resolutions

–Logistical Resolutions

–Functional Resolutions

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence Resolution Approach (Adapted from Bartel et al)

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 31 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Text

Software Obsolescence Vs

Software Maintenance

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Breakdown of Technological Resolutions Approach

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 33 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Maintenance –Definitions (Adapted from ISBSG)

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 34 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Maintenance and Software Obsolescence Relationship

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 35 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Case Study

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 36

Six case studies were undertaken to establish a relationship between software maintenance and software

obsolescence . Below is the data point used for one of these case studies.

• Data from ISBSG

• Data points from

– Financial Industry

– Government

– Electronics and Computers

– Communications

• Number of applications :- 201-500

• Y= No of Applications

• X1 = Total Maintenance Hours

• X2 = Perfective Maintenance Hours

• X3 = Adaptive Maintenance Hours

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Maintenance and Software Obsolescence Relationship

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 37 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Case Study- Findings

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 38

• On Software with larger applications, about 95% of the time is spent on corrective

maintenance.

• This indicates that more time is spent on reactive management of the software.

• In order to reduce software obsolescence, more time should be spend on

preventive and perfective maintenance.

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence is a an emerging issues and it is important to understand how much SW/Obs

is going to cost at a very early stages of development life cycle. In order to do so we need to

–Define what Software obsolescence is

–Understand the difference between Software Maintenance and Obsolescence

– Identify how Software Obsolescence is triggered

–Have a framework to manage software obsolescence proactively

– Identify the key Software Obsolescence Resolution approaches

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 39

Summary

Conclusions

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 40

• Software plays an important role in defence. Almost every project in defence has software elements

with various degrees of complexity and dependencies.

• In order to understand and see the bigger picture and challenges; software developers and the

customers need to foresee the following issues that drive the whole life cost and should be in a

position to develop innovative means to mitigate these issues by:

– Anticipation of the Software Obsolescence at a very early stage of projects.

– Understanding the technology insertion, technology update requirement.

– Understanding the relationship between Software Maintenance and Software Obsolescence.

– Anticipation of future capability integration to the existing platforms taking into account systems of systems,

software to software and software to hardware integrations.

– Formulation and evaluation of alternative architectural framework to inform the software designers that

recognises the key market and cost drivers.

Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

Software Obsolescence Cost Analysis Framework | 08/2017| ©QinetiQ 41 Unclassified-QinetiQ Proprietary

Unclassified-QinetiQ Proprietary

COST ASSESSMENT DATA ENTERPRISE

CADE Update and Major Initiatives
SW & IT CAST

August 23th, 2017

Daron Fullwood, Director

Defense Cost and
Resources Center (DCARC)

Daron.D.Fullwood.Civ@mail.mil

2

What is CADE?
CADE Vision and Major Initiatives

Cost

› Browse/Export
Prime and
Subcontractor
Cost Data

Earned Value (EVM)

› Browse/Export
Data on ACAT I
Prime Contracts

› Quick-look
Visualization
Tools

Acquisition

› Program
Information

› SAR/MAR
Annual Funding

› SAR/MAR
Schedule Events

› CARDs*

Technical

› Software
Database

› Electronic
CARDs
(eCARDs)*

› Technical Data
Reports*

Library

› Cost Estimates

› Funding Memos

› Program Briefings

› Research Studies

› Actual Cost and
Technical Data

› Program and Data
Situational Awareness

› Analysis-Ready
Data Downloads

› Quick-Look
Visualizations

CADE is the authoritative data source for estimating, analyzing, and managing Major Defense Programs

URL http://cade.osd.mil

3,648 EV Submissions 349 Programs 53,875 CSDR Submissions

CARD ingestion into
 CADE coming Fall 2017

eCARD currently
 in development

Coming Soon* Technical Data reports
 currently being put
 into policy

3

What is the DCARC?
CADE Vision and Major Initiatives

Plan

› Facilitates the
development of plans
with the CWIPT

Validate

› Locates errors and
communicates with
contractor to correct

Monitor

› Issues quarterly
compliance criteria for
delinquent programs

Analyze

› Further examination
of program events

› Develops CSDR Policy

› Communicates with
Program Offices,
Service Cost Centers,
CAPE and contractors

› Administers CAPE
rating for DAES

› Trains community on
CSDR policies and
procedures

URL http://cade.osd.mil

Plan Validate Monitor Analyze 1 2 3 4 3

1

2 3 4

4

Why is CADE Important?
CADE Vision and Major Initiatives

Excel Files
Electronic files

DACIMS
Searchable

database

CADE
Improved UI

Co-Plans

Data visualization

Strategic data planning

CADE 2018
Comprehensive data

Technical data

Maintenance data

Software data

Flexfiles, eCard, CSDR+

Integrated dashboard

Guided workflows

Better IT functionality

Provide decision makers with analyses

› Allows for better acquisition strategies and execution
› Shift from reactive to proactive holistic analysis
› Informs lifecycle program decisions

Quality and transparency of source data

› Consistency – where data comes from, what we
know about it

› Enterprise data stewardship – enterprise agreement
and accountability for what data means and how it is
used

› Reporting compliance improvement

PDF Files
Paper printouts

CADE is both an online data platform and
the cost community’s strategic initiatives
to improve data collection.

Data properly secured both at rest and in
motion

CADE enables analysts and the Department to do more with less

2005 2009 2013 2016 2018

Analyst
Effectiveness

Analysis & Awareness Data Synthesis & Understanding Data Collection

5

Why is CADE Important?
CADE Vision and Major Initiatives

Analogous Program
O&S CADE Data

CCDR parametric
methods facilitate

more accurate O&S
estimates.

Operations & Support (O&S) Material
Solution
Analysis

Technology
Maturation & Risk

Reduction

Engineering &
Manufacturing
Development

Production and Deployment

TD Contract
Award

Dev Contract
Award

LRIP Contract
Award

Your TD CADE Data

Enables acquisition
strategy development

and credible cost
estimates

Your EMD CADE Data

Allows for better learning
curve analysis to project

future costs of production
contracts.

Your Prod. CADE Data

Enable PMs and COs to
perform in-depth profit

analyses and better
negotiate fixed price options.

Your O&S CADE Data

Assists decision makers on
their sustainment strategies.

Analogous Program
CADE Data

CCDRs allow analysts to
generate Analysis of

Alternatives and Life Cycle
Cost Estimates.

FRP Decision

Analogous program CADE data is critical early in a program’s lifecycle.
As the program progresses, its own actual data becomes invaluable in budget

formulations, contract negotiations, and source selections.

A B C

CSDR+
FlexFile

(-Q) EVM-
CR

DAMIR
SRDR

Library eCARD

1921-3

BOM

Tech
(-T)

M/R

CADE 2018 Architecture -
Summary

CSDR+
enhance CSDR data

FlexFile (-Q)
automated detailed cost data

eCARD
consumable program information

Guided Workflow
intuitive online program planning

Integrated Dashboard
customizable personalized information

API
improved database foundations

1

2

3

4

5

6

6

CADE Vision and Major Initiatives

CADE Architecture - Summary
CADE Vision and Major Initiatives

CSDR+
enhance CSDR data

7

Enhanced data utility of CSDRs
enabled by

› Contextual tagging
› Standardized metadata

Improved online user experience of
CSDR data through

› Modern search/filtering
› Updated interactive analytics and

visuals

1

CSDR+
FlexFile

(-Q)
EVM-CR

DAMIR
SRDR

Library CARD

1

2

3

4

5

6

CADE Architecture - Summary
CADE Vision and Major Initiatives

FlexFile (-Q)
automated detailed cost data

8

Search/Query Visualizations
Prototype

Ability to create and validate client
side FlexFile effort

*Ability to submit and validate a FlexFile
is being developed under core CADE

2

CSDR+
FlexFile

(-Q)
EVM-CR

DAMIR
SRDR

Library CARD

1

2

3

4

5

6

CSDR+
FlexFile

(-Q)
EVM-CR

DAMIR
SRDR

Library eCARD
Tech
(-T)

CADE Architecture - Summary
CADE Vision and Major Initiatives

eCARD
consumable program information

9

Online site capabilities to view and
consume CARD data

3
1

2

3

4

5

6

CADE Architecture - Summary
CADE Vision and Major Initiatives

Guided Workflow
intuitive online program planning

10

Will provide user a single,
comprehensive, online, guided, and
modern planning module
› Replaces planning functions

within cPet Desktop, cPet Web,
and PPM

› Incorporates Co-Plans

Future efforts include the entire
submission/review workflow

4

CSDR+
FlexFile

(-Q) EVM-
CR

DAMIR
SRDR

Library eCARD

Plan Validate
Monitor &
Measure

Visual &
Analytics

1

2

3

4

5

6

CADE Architecture - Summary
CADE Vision and Major Initiatives

Integrated Dashboard
customizable personalized information

11

Centralized, customizable
dashboard for personalized
informational and data from
multiple areas of CADE

Views and see the important data in
one place, making use of CADE
more efficient

5

CSDR+
FlexFile

(-Q)
EVM-CR

DAMIR
SRDR

Library eCARD

1

2

3

4

5

6

CADE Architecture - Summary
CADE Vision and Major Initiatives

API
improved database foundations

12

Being applied to other capabilities
such as CSDR+, eCARD, etc.

Automated ability for outside
systems to consumer non-
proprietary data from CADE

6

CSDR+
FlexFile

(-Q)
EVM-CR

DAMIR
SRDR

Library eCARD

1

2

3

4

5

6

Major Initiatives
CADE Vision and Major Initiatives

Cost:

1921-3
improved ways of reporting business unit
data

Bill of Materials
Standardized collection of parts and supplier
pricing data

Technical Reporting:

Technical Data (1921-T)
programmatic and technical descriptions
analysts need to build estimates

Maintenance and Repairs (M/R)
collection of information related to each
maintenance event such as the specific
system being repaired and reason for failure

13

CSDR+
FlexFile

(-Q)
EVM-CR

DAMIR
SRDR

Library

1921-3

BOM
CARD

Tech
(-T)

M/R

CADE Modernization Integration Timeline
CADE Vision and Major Initiatives

FUNDING AS OF FEBRUARY 2017

Core CADE
3. cPet

Desktop
3. cPet
Web

3/4/6. Program
Planning Module

1. DACIMS
1/4/5/6. CSDR
Submit-Review

2017 2018 2019 2020

CADE 2020

Modernized
Fully

Integrated
CADE

Core CADE Sunset

1/4/5/6 - Data
Analytics

2/4/6 - CARD Submit
Review

CADE 2019
Next Approved Block of
Improved Application

CADE 2018 CADE 2019

CONVERSION

CADE 2018

1. CSDR+

2. eCARD

3. Guided Workflow

4. API

5. FlexFile

6. Integrated Dashboard

1. 1921-3

2. BOM

3. Tech (-T)

4. M/R

COST ASSESSMENT DATA ENTERPRISE

MAIS Reporting Update

Available MAIS Reports

MAIS Reporting Update

11

0

10

20

30

40

50

60

2010 2011 2012 2013 2014 2015 2016 2017

C
SD

R
 F

ile
 C

o
u

n
t

NGEN 40 GCSS ARMY 15

Navy ERP 3 DHMSM 10

LMP Inc. 2 13 DEAMS Inc. 1 20

ISPAN Inc. 4 12 DCGS ARMY 6

IPPS-A Inc. 2 3 CAC2S Inc. 1 7

GFEBS 1 AOC-WS Inc. 10.2 7

COST ASSESSMENT DATA ENTERPRISE

Software Resource Data
Reporting (SRDR)

18

Overview
Software Resource Data Reporting (SRDR)

SRDR
Development:

Introduction of Agile Measures
› Supports capturing the metrics and effort

associated with this SW dev methodology

Maintenance:

Collection of Information Assurance and
Vulnerability Assessment (IAVA) data
› Ability to distinguish IAVA-related releases
› Clarified SW change count definitions to

include IAVA

Updated SW Maintenance Effort definitions
› SW License Management is a PM activity

CSDR+
FlexFile

(-Q) EVM-
CR

DAMIR
SRDR

Library eCARD

19

Formats
Software Resource Data Reporting (SRDR)

Technical Data

SW size, context, technical
information

Release level and computer SW
configuration item (CSCI) level
sections

Effort Data

Reports SW efforts associated
with each reported release and
CSCI

Technical Data

SW size, context, technical
information

Top level and release level
sections

Effort Data

Reports the to-date SW
maintenance efforts for each in-
progress and completed
release(s), and total maintenance
activities

Technical Data

SW product, context, object sizing
and implementation

Project, Sizing and
Implementation sections captured
at the release level

Effort Data

Project resource and schedule
information at the release level

Pa
rt

 1

Pa
rt

 2

Development Maintenance ERP

20

CADE Community
CADE Vision and Major Initiatives

Cost Technical

AFCAA CEM joint CADE
effort, commodity leads,
Contract Databases,
Software & Technical Data,
CARDs, SAR database

FlexFile, JCARD (NAVAIR),
Ships WG, CCRL, CER
Handbook, SAR database

USMC BOM/CER Effort

JIAT, ACDB/WTV/Missile prototype,
TACOM WTV CIPT, Historical Data
Migration

MDA-DCARC alignment,
CCRG

EVM-CR, DAVE (DAMIR, AIR,
Kaleidoscope)
DDR&E/SE tech data; LM&R
CARD input, DCMA, DPAP, DAU,
Big Data initiative,
CSDR/EVM Co-Plans

CSDR Focus Group, Joint Training, NDIA,
FlexFile Pilot Leads: LMCO, Boeing, NGC, BAE, GDLS, HII, Ball Aerospace
CIPTs: Aviation, JSCC, O&S, Software and IT, WTV

Industry

Office Collaboration Commodity Study Joint Effort

Aircraft Missiles

O&S WTV

MAIS

Radar, C2
Center, C41

Ships Space

ICBM

UAV

Service Cost Agency Leads

David Henningsen
Katherine McCormack

Duncan Thomas
Justin Moul

SRDR: Ranae Woods, AFCAA
CARD: Curt Khol, CAPE
Tech Data: Greg Hogan, AFCAA
MAIS: Richard Mabe, AFCAA
Maintenance & Repair: Lisa Mably, AFCAA

FlexFile: Daron Fullwood, CAPE
CSDR/EVM Co-Plan: John McGregor, AT&L PARCA/EVM
1921-3: Mike Biver and Carol Moore, CAPE
Sustainment: Tom Henry, CAPE; Lisa Mably, AFCAA
Materials: Praful Patel, NCCA

Ranae Woods
Greg Hogan

Points of contact
CADE Vision and Major Initiatives

CADE Training
Torri Preston
571-372-4270 Office
Torri.R.Preston.ctr@mail.mil

CADE Help Desk
(253) 564-1979
cadesupport@tecolote.com

Director, Cost Assessment Data Enterprise (CADE)
Bess Dopkeen
(703) 695-7282 Office
bess.r.dopkeen.civ@mail.mil

34

Director, Defense Cost and Resource Center (DCARC)
Daron Fullwood
571-372-4267 Office
Daron.D.Fullwood.civ@mail.mil

mailto:Torri.R.Preston.ctr@mail.mil
mailto:Daron.D.Fullwood.civ@mail.mil
mailto:Daron.D.Fullwood.civ@mail.mil

COST ASSESSMENT DATA ENTERPRISE

Back Up

Strategic Planning Technical Cost

23

Major Initiatives
CADE Vision and Major Initiatives

Co-Planning
› Reporting strategy that aligns CSDR &

EVM requirements
› Cooperative planning leads to better

data, lower costs, and improved program
management

Institutional Knowledge/
Community Support
› What analysts need to know about the

data
› Additional contextual information on

programs

Cost/Quantity Reporting
› Cost Data (CCDRs/1921s) – contains

most of what analysts need to build an
estimate – dollars, hours, quantities,
and descriptive tagging

› FlexFiles – new generation of cost
reporting, government data reporting

› Quantity Report (1921-Q) – provides
actual account of physical units
completed in a streamlined submission
process

› 1921-3 – improved ways of reporting
business unit data

Bill of Materials
› Standardized collection of parts and

supplier pricing data

Technical Reporting
› Cost Analysis Requirements

Description (CARD) / Technical Data
(1921-T) – programmatic and technical
descriptions analysts need to build
estimates

Software
› SRDRs – software effort, size, and

schedule estimating approaches
including analogy, parametric, and
commercial models

Maintenance & Repairs
› 1921-M/R – collection of information

related to each maintenance event
such as the specific system being
repaired and reason for failure

Cost analysts will have all of this data and institutional knowledge at their fingertips.
It will be the exception – not the rule – to go back to industry to do our estimates.

University of Southern California

Center for Systems and Software Engineering

COCOMO III Workshop:

Implementing a New Driver for

Software Security

Brad Clark, PhD

Software and IT-CAST Meeting

August 22, 2017

University of Southern California

Center for Systems and Software Engineering

Abstract
• Making software applications secure from intrusion, corruption,

attack, denial of service and other things is challenging. Does it

really cost that much more to make software secure?

• This workshop will discuss what it means to make software

secure and where it might cost more to implement security

measures.

• The COCOMO III model needs to consider the costs associated

with building secure software.

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 2

University of Southern California

Center for Systems and Software Engineering

Topics
• Software Security Overview

– Why Software Security

– Supply Chain Management Impact

– Examples of Software Weaknesses

– Software Component Security Requirements

– Software Development Security Requirements

• COCOMO III Model Overview

• Discussion on Implementing a New Driver

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 3

University of Southern California

Center for Systems and Software Engineering

Why is Software Security Important?
• There have been dramatic increases in business and mission

risks attributable to exploitable software

• Software vulnerabilities jeopardize

– intellectual property

– consumer trust

– business operations and services

– broad spectrum of critical infrastructures (including everything from

process control systems to commercial software products)

• Recent examples:

– Recent NSA ransom ware attacks

– Foreign hackers 'may have hit voter site days before referendum’

– US child hacker launches cyber attack on Brussels Airport

– Penthouse and Adult Friend Finder hack leaves over 412 million

exposed… Oops

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 4

University of Southern California

Center for Systems and Software Engineering

Is It Worth It?
• How much additional effort (cost) does it take to develop secure

software considering the impact of:

– Security requirements for software

• Impacted by levels of security

– Implementation expertise

– Testing independence

– Process and tool support

– Platform constraints and configurations (volatility)

• Two cost aspects:

– Software component security requirements

– Management of a secure development lifecycle process

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 5

University of Southern California

Center for Systems and Software Engineering

Non-Functional Requirement Tensions

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 6

• Functional requirements specify the work for which the system is

intended

• Non-Functional requirements pertain to the functions of the system

• There is a tradeoff between Security and other Non-Functional req’ts

Security

Safety

Availability

Interoperability

Modifiability
Performance

Testability

Usability

Portability

Scalability

Reliability

University of Southern California

Center for Systems and Software Engineering

Application Development Context

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 7

Product

Supplier
Software

Applications

Embedded

Devices

Network

Components

Host

Devices

Product

develops

Asset

Owner

Operational and Maintenance capabilities

(policies & procedures)

operates
+

System

Integrator Subsystem-1 Subsystem-2
Complementary

HW & SW

Automated Solution

integrates

…

Source: ISA-62443-4-1 Secure Product Development Lifecycle Requirements

University of Southern California

Center for Systems and Software Engineering

Development Supply Chain Context

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 8

Asset

Owner

System

Integrator

Product

Supplier

Reused

Software

In-House

Software

Acquired or

Outsourced

Custom

Software

COTS

Software

COTS

Supplier

Reused

Software

In-House

Software

?

?

? ?

? ?

What security was

implemented in the

software down-line from

the acquired product?

? ?

?

?

?

?

Source: adapted from DHS, “Software Assurance in Acquisition and Contract Language”

Defense in Depth is a design concept

that attempts to address this issue.

Platform

• Embedded

• Network

• Hosted

University of Southern California

Center for Systems and Software Engineering

Examples of

Weaknesses Introduced During Design
• Acceptance of Extraneous Untrusted Data With Trusted Data

• Access to Critical Private Variable via Public Method

• Addition of Data Structure Sentinels, e.g. null character at the end of strings

• Algorithmic Complexity

• Allocation of File Descriptors or Handles

Without Limits or Throttling

• Allocation of Resources Without Limits or

Throttling

• Incorrect Control Flow Implementation

• Apple '.DS_Store’

• Argument Injection or Modification

• ASP.NET Misconfiguration: Not Using Input Validation Framework

• Asymmetric Resource Consumption (consume more resources than the

access level permits)

…

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 9

Source: Mitre-CWE, Common Weakness Enumeration A Community-Developed List of Software Weakness Types

University of Southern California

Center for Systems and Software Engineering

 Weaknesses in the 2011 CWE/SANS Top 25

Most Dangerous Software Errors Examples
• Cross-Site Request Forgery (CSRF)

– Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting’)

– Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection’)

– Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection’)

• Porous Defenses

– Execution with Unnecessary Privileges

– Improper Restriction of Excessive

Authentication Attempts

– Incorrect Authorization

– Incorrect Permission Assignment for

Critical Resource

…

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 10

Source: Mitre-CWE, Common Weakness Enumeration A Community-Developed List of Software Weakness Types

University of Southern California

Center for Systems and Software Engineering

Examples of

Weaknesses in SW Written in C++

• Access of Resource Using Incompatible Type ('Type Confusion’)

• Access to Critical Private Variable via Public Method

• Base Addition of Data Structure Sentinel

• Assignment of a Fixed Address to a Pointer

• Buffer Access with Incorrect Length Value

• Base Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow’)

• Buffer Underwrite ('Buffer Underflow’)

• Cloneable Class Containing Sensitive Information

• Compiler Optimization Removal or Modification of

Security-critical Code

…

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 11

Source: Mitre-CWE, Common Weakness Enumeration A Community-Developed List of Software Weakness Types

University of Southern California

Center for Systems and Software Engineering

Software Security Requirements
• What are examples of security requirements for software?

• Many security resources discuss security policy

• In this presentation, one set of requirements was selected to

provide insight:

– ISA‐62443‐4‐2 Security for Industrial Automation And Control

Systems Technical Security Requirements for IACS Components

– ISA: International Society of Automation

– IACS: Industrial automation and control system

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 12

University of Southern California

Center for Systems and Software Engineering

Security Requirements for

Software Components -1

1. Identification and
authentication control

Human user identification and
authentication

Software process and device
identification and authentication

Account management

Identifier management

Authentication management …

2. Use control

Authorization enforcement

Wireless control

Use control for portable and
mobile devices

Session lock

Remote session termination …

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 13

Source: ISA-62443-4-2 Technical Security Requirements for IACS Components

University of Southern California

Center for Systems and Software Engineering

Security Requirements for

Software Components -2

3. System
integrity

Communication
integrity

Malicious code
protection

Software and
information integrity

Input validation

Error handling …

4. Data
confidentially

Information
confidentiality

Information
persistence

Use of cryptography

5. Restricted
data flow

Network
segmentation

Zone boundary
protection

Person-to-Person
communication

restrictions

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 14

University of Southern California

Center for Systems and Software Engineering

Security Requirements for

Software Components -3

6. Timely response
to events

Audit log accessibility

Continuous monitoring

7. Resource
availability

Denial of service protection

Resource management

Control system backup, recovery
and reconstitution

Network and security
configuration settings

Least functionality

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 15

University of Southern California

Center for Systems and Software Engineering

Component Security Levels

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 16

• The seven security requirements shown previously have four

Security Levels (SL).

• Identify and authenticate all users (humans, software processes

and devices) by mechanisms that

Source: ISA-62443-4-2 Technical Security Requirements for IACS Components

SL-1 – Protect against casual or coincidental access by unauthenticated entities.

SL-2 – Protect against intentional unauthenticated access by entities using simple
means with low resources, generic skills and low motivation

SL-3 – Protect against intentional unauthenticated access by entities using
sophisticated means with moderate resources

SL-4 - Protect against intentional unauthenticated access by entities using
sophisticated means with extended resources

University of Southern California

Center for Systems and Software Engineering

Impact of Component Security

Requirements on Development Effort

• More requirements affect software effort (cost) by increasing the

functionality (or size) to be implemented in the software

• The four security levels shown previously increase the amount of

functionality (and size) and therefore effort

• The amount of effort required, directly related to the amount of

functionality, is influenced by other factors such as

– Product Factors (e.g. complexity, reliability)

– Personnel Factors (e.g. capabilities, experience)

– Platform Factors (e.g. constraints, volatility)

– Project Factors (e.g. precedentedness, risk resolution, process

capability, development flexibility, tools)

• These are addressed next

 22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 17

University of Southern California

Center for Systems and Software Engineering

Secure Development Lifecycle -1
• Security management

– Identification of responsibilities

– Security expertise

– Code signing

– Development environment security

– 3rd party embedded component security

– Process verification

• Specification of security requirements

– Product security requirements (authentication, authorization,

encryption, auditing and other security capabilities)

– Product security context (product’s intended operating environment

including physical environment)

– Threat model (analysis that identifies potential security issues and

how they will be addressed)

– Security requirements review

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 18

Source: ISA-62443-4-1 Secure Product Development Lifecycle Requirements

University of Southern California

Center for Systems and Software Engineering

Secure Development Lifecycle -2
• Secure by design

– Secure design principles

– Defense in depth design (layers of security)

– Security design review

– Assessing & addressing security-related issues

• Secure implementation

– Security implementation review

– Assessing & addressing security-related issues

• Security verification and validation testing

– Security requirements testing

– Threat mitigation testing

– General vulnerability testing

– Penetration testing

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 19

University of Southern California

Center for Systems and Software Engineering

Secure Development Lifecycle -3
• Security defect management

– Receiving notifications of security-related issues

– Reviewing security-related issues

– Assessing & addressing security-related issues

– Disclosing security-related issues

• Security update management

– Dependent component or operating system security update

documentation

– Security update delivery

– Timely delivery of security patches

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 20

University of Southern California

Center for Systems and Software Engineering

Conclusions
• Software component security requirements affect the amount of

functionality

• Software development security requirements affect the

productivity of the work

• Security Levels affect both the

– Amount of functionality, e.g. more software to be developed

– Amount of development tasks, e.g. increased reviews, testing, audits

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 21

University of Southern California

Center for Systems and Software Engineering

Topics
• Software Security Overview

– Why Software Security

– Supply Chain Management Impact

– Examples of Software Weaknesses

– Software Component Security Requirements

– Software Development Security Requirements

• COCOMO III Model Overview

• Discussion on Implementing a New Driver

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 22

University of Southern California

Center for Systems and Software Engineering

Defect removal profile

levels

Software
development and
maintenance
estimates for:

• Effort

• Cost & Schedule
distributed by:

o Phase

o Activity

o Increment

• Quality

Local calibration to

organization’s data

COCOMO

III

Model

COCOMO is an open and free model

Software product size

estimate

Software product,

platform, personnel &

project attributes

Software reuse,

maintenance, and

increment parameters

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 23 22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 23

University of Southern California

Center for Systems and Software Engineering

Software product size

estimate

COCOMO III Model Concept

Defect

Introduction

Model

Defect

Removal

Model

Schedule

Model

Effort

Model

Number of est. residual defects

and the residual defect density

Number of est. non-trivial defects

for Requirements, Design, &

Code

Defect removal profile

levels

Software product,

platform, personal &

project attributes

Labor Rates

Costs ($$)

Effort (Person Months)

Staffing Levels

Schedule (Months)

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 24

University of Southern California

Center for Systems and Software Engineering

Where:

A, B, C, D are constants determined by calibration

E represents (dis)economies of scale and project-wide scale

factors

COCOMO III Effort & Schedule

Estimation Model

Effort (PM) = A * SizeE * Product(14 Cost Drivers)

E = B + Sum(5 Cost Drivers)

Schedule (M) = C * PMF * SCED%/100

F = D + 0.2(E-B)

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 25

University of Southern California

Center for Systems and Software Engineering

COCOMO III Defect Introduction

and Removal Model

Defect Introduction (DI) = A * SizeE * Product(DI Drivers)

E = Initially set to 1.0

Residual Defects = C * DI * Product(1 – DRF)

DRF: Defect Removal Fraction from 3 profiles:

1. Automated Analysis

2. People Reviews

3. Execution Testing

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 26

University of Southern California

Center for Systems and Software Engineering

COCOMO III Cost Drivers -1
• Product Attributes

– Impact of Software Failure (FAIL) (formerly RELY)

– Product Complexity (CPLX)

– Developed for Reusability (RUSE)

– Required Software Security (SECU) - New

– Dropped:

• Documentation Match to Lifecycle Needs

• Database Size

• Platform Attributes

– Platform Constraints (PLAT) – New

– Platform Volatility (PVOL)

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 27

University of Southern California

Center for Systems and Software Engineering

COCOMO III Cost Drivers -2
• Personnel Attributes

– Analyst Capability (ACAP)

– Programmer Capability (PCAP)

– Personnel Continuity (PCON)

– Applications Experience (APEX)

– Language and Tool Experience (LTEX)

– Platform Experience (PLEX)

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 28

University of Southern California

Center for Systems and Software Engineering

COCOMO III Cost Drivers -3
• Project Attributes

– Precedentedness (PREC)

– Development Flexibility (FLEX)

– Opportunity and Risk Resolution (RESL)

– Stakeholder Team Cohesion (TEAM)

– Process Capability & Usage (PCUS) (formerly PMAT)

– Use of Software Tools (TOOL)

– Multisite Development (SITE)

• Defect Removal Profile

– Automated Analysis

– People Reviews

– Execution Testing and Tools

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 29

University of Southern California

Center for Systems and Software Engineering

Topics
• Software Security Overview

– Why Software Security

– Supply Chain Management Impact

– Examples of Software Weaknesses

– Software Component Security Requirements

– Software Development Security Requirements

• COCOMO III Model Overview

• Discussion on Implementing a New Driver

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 30

University of Southern California

Center for Systems and Software Engineering

COCOMO III Workshop
• This activity focuses on which COCOMO III Cost Drivers are impacted by

software component and development requirements.

• You are asked to examine the requirements on the following pages and

identify the applicable Cost Driver that addresses that requirement

• Refer to the handout

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 31

University of Southern California

Center for Systems and Software Engineering

Glossary
• CWE: Common Weakness Enumeration

• ISA: International Society of Automation

• IACS: Industrial Automation And Control System

• Vulnerability: A vulnerability is a software weakness that can be

exploited by an attacker. Bugs and flaws collectively form the

basis of most software vulnerabilities.

• Weakness: A weakness is an underlying condition or construct

existing in a software system that has the potential for negatively

impacting the security of the system.

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 32

University of Southern California

Center for Systems and Software Engineering

Resources
• ISA-62443-4-1, “Secure Product Development Lifecycle

Requirements,” Security for Industrial Automation and Control

Systems, Draft 3, Edit 11, March 2016

• ISA-62443-4-2, “Technical Security Requirements for IACS

Components,” Security for Industrial Automation and Control

Systems, Draft 2, Edit 4, July 2, 2015

• Mitre-CWE, Common Weakness Enumeration A Community-

Developed List of Software Weakness Types,

http://cwe.mitre.org/data/index.html, accessed May 2017

• DHS, “Software Assurance in Acquisition and Contract

Language,” Software Assurance Pocket Guide Series, Vol 1, Ver

1.2, May 2012

• Lots of papers

 https://www.us-cert.gov/security-publications

22 August 2017 Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 33

http://cwe.mitre.org/data/index.html

University of Southern California

Center for Systems and Software Engineering

Brad Clark - Software & IT-CAST - ©2017 USC-CSSE 34

For more information, requests or

questions, please contact

Brad Clark

Software Metrics, Inc.

brad@software-metrics.com

703-402-3576

22 August 2017

mailto:brad@software-metrics.com
mailto:brad@software-metrics.com
mailto:brad@software-metrics.com

	Software and IT-CAST Proceedings
	Table of Contents
	Overview
	Agenda
	Keynote Biography
	Abstracts
	Keynote Address
	PRESENTATIONS
	1. AGILE and GAO Cost Estimating Best Practices
	2. How Should We Estimate Agile Projects and Measure
	3. Software Size Growth
	4. Adapting a Classic Independent Cost Estimation for Agile DevOPS
	5. Assessing ERP Cost Schedule and Size Growth
	6. Objective SLOC SW and IT-CAST
	7. SW Cost Estimation Meets SW Diversity IT-CAST 0822 2017
	8. Army Software Maintenance Cost Estimating - Phase I SWM Analysis Results
	9. Apples and Oranges - Cloud Cost Tools Aug 2017
	10. Rosetta Stone Presentation_2017_vFINAL
	Discovering the Rosetta Stone:�A Strategic Method to Software Sizing
	Introduction
	Contents
	Three Main Estimation Methods
	Work Activity Statement
	Sizing Challenges
	What is “Size”?
	The Sizing Dilemma
	Sizing Units Defined
	Agile Sizing Units Defined
	Sizing Methods Used at Various Stages of the Software Development Life Cycle
	Facilitate Communication Between Requirements Authors and Developers
	The Ol’ Bait and Switch
	Rosetta Stone Approach
	The Rosetta Stone
	Applying Rosetta Stone Concept to Software Sizing
	Applying Gearing Factors
	Calculating the Gearing Factor
	Gearing Factors Research
	Methods��Example: Requirements
	Translating from One Sizing Unit into Others
	Putting theory into Practice
	Potential Uses
	Vendor Bid Assessment
	Vendor Bid Assessment
	Organizational Translator
	Organizational Translator
	Closing
	Questions?

	11. SURF Process and FY16 Findings_FINAL
	12. Expanding the Horizon of SW Cost Estimation
	13. Why Does Software Cost So Much v074
	14. Reliable NDCTI Cost Relationships_20170606
	15. Introduction to Software Obsolescence Cost Analysis Framework
	16. Cost assessment Data Enterpirise Overview and SW Initiatives
	17. COCOMO III Workshop

