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DEFINITIONS

1DA publishes the following documents to report the results of its work.

Reports

Reports are the most authoritative and most carefutly considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b} address Issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panals of experis
to ensure their high quality and retevance to the problems studied, and they are released
by the President of IDA.

Group Reporis

Group Reports record the findings and results of IDA established working groups and
panels composed of senior Individuals addressing major issues which otherwise would be
the subject of an IDA Report. {DA Group Reporis are reviewed by the senior Individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers

Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed fo ensure
that they meet the high standards expected of refereed papers In professionai journals or
formal Agency reports.

Documents

iDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done In quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed In the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
Is suited to their content and intended use.

The work reported In this publication was conducted under IDA’s Independent Research
Program. Its publication does not imply endorsement by the Department of Defense, or
any other Government agency, nor should the contents be construed as reflecting the
official position of any Government agency. ’
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PREFACE

This paper was prepared by the Institute for Defense Analyses (IDA) under IDA’s
Independent Research Program. The objective was to develop an algorithm to simulate

correlated random variables from partially specified, non-normal distributions.

This work was reviewed within IDA by Arthur Fries and Eleanor Schwartz.
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I. INTRODUCTION

A. BACKGROUND

Cost estimates of major new programs in both government and industry have
historically been unreliable. As a result, new programs frequently overrun their budgets.
To remedy this situation, a formal risk analysis now accompanies most cost estimates. A
risk analysis begins with an assessment of uncertainty in the individual factors or cost
elements that contribute to cost growth. The risk analysis then aggregates these factors
into a distribution of total cost. The decision-maker is thus presented with an entire range

of total costs, along with associated probabilities, rather than a single cost estimate.

For some production processes, total cost may be expressed as the simple sum of
the costs of lower-level components or cost elements. Using elementary statistical
relationships, the first two moments of total cost can be obtained from the means,
variances, and correlations among the individual cost elements. However, unless the
individual cost elements are normally distributed, it is not generally possible to find a
closed-form solution for the distribution of total cost. Therefore, it is not possible to go
beyond moments and characterize the cost distribution in terms of percentiles, confidence

bounds, or prediction limits.

In some cases, total cost may not be expressed as a simple sum, so even the
moments of total cost are intractable. For example, alternative development programs
may proceed in parallel, with the first successful arrival being adopted. Development
cost in this case equals the full cost of the successful alternative (whose identity is not
known in advance), plus the truncated costs of all unsuccessful alternatives. Thus, total
cost becomes a complex, probabilistically-weighted average of truncated random

variables.

Given such difficulties, simulation is often the only viable method for estimating
the distribution of total cost. The input to a simulation must include a flow diagram
indicating which processes proceed in parallel and which proceed in series. A
distribution of cost must be associated with each arc (i.e., cost element) in the flow
diagram. Typically, information on cost will come from many different subject matter

experts. Usually, the only pieces of information these experts can provide are moments




(mean or median or mode, and possibly variance), marginal distributions (beta, triangular,

log-normal, etc.), bounds (lowest and highest possible cost), if applicable, and

correlations among the cost elements. Unfortunately, the correlation matrix can be

specified independently of the marginal parameters for only a few multivariate
distributions (the multivariate normal distribution, rarely used in cost analysis, is a

notable example). In other words, once the marginal parameters have been determined,

restrictions are placed on the correlations. These restrictions will often be incompatible

with the correlation matrix specified by the user (or even estimated from data if the wrong

distributional forms are assumed). Examples of restrictions on correlation matrices are

provided in the next section.

B. RESTRICTIONS ON CORRELATION MATRICES

The following three examples illustrate the restrictions that certain multivariate
distributions place on the correlation matrix.
1. Bivariate log-normal distribution [1]. Suppose Y, and Y, are jointly normally

distributed with zero means, variances 6?,i=1,2, and correlation p,. Let X, =exp(Y))
fori=1,2. Then X; and X, are jointly log-normally distributed with correlation:

ePy°1° 2.1
Px= 2 2 .
Vel —1et -1
Thus, for example, if 6, =1 and 6,=2, the correlation between X, and X, must be

within the bounds —09 < p, <67 . If the analyst believes that the correlation between X,
and X, lies outside these bounds, then the bivariate log-normal distribution cannot be

used.

2 Dirichlet distribution [1]. This is a type of multivariate beta distribution; its

density is:

F(x5sX,) =—=0

[Tre)

The marginal distribution of any variable X; is beta with parameters O.; and
B, = " ,0;—0 ;. The mean and variance of X; are therefore o /(a;+B;) and

Yo, , ol
[l—Zx,.) fo""‘ :
i=1

i=1




o,B;/l(o; + B j)z(a ;+B;+DI, respectively. Furthermore, the correlation between any pair

o0 .
Pi=\RER forall i #}.
il

Thus, once the means and variances of the individual cost elements have been estimated

or specified, there are no degrees of freedom left to independently specify the correlation

of variables X; and Xj is:

matrix.

3. Modified Farlie-Gumbel-Morgenstern (FGM) distributions [2]. This class of
distributions was explicitly designed to allow flexible correlations with a given set of
marginals.  Consider univariate density functions fi(x;) and fa(x2) and let w(?),

i = 1, 2, be bounded nonconstant functions such that r v, (1) f,(1)dt=0. Then the

function defined by

h(x,,%,) = f, () f2 () {1+ OW, (X)W 5 (x,))

is a bivariate joint density with specified marginals fi(x;) and fx(x,), where ® is a real
number satisfying the condition that 1+ @, (x)¥ ,(x,) 20 for all x, and x,. Multivariate
extensions of this family of distributions can also be derived [2].

Ifwelet o, = [ tfi()dt, o} =[_(t—n,Yfi(n)d and v, = [“ 1w @@, and

assume that all the integrals converge, we can show that the correlation between x; and x;
is:

_ VYV,

- Y ]G 2 .

Suppose, for example, we wish to generate a modified FGM distribution with beta
marginals on the interval (0,1) and parameters o, =2, B,=3,a,=5andfB,=4. To
determine the range of possible correlations, we first approximated continuous functional
forms for y,(¢) and y,(f) by specifying () and y»(?) as constant within subintervals of
length .05 (ie., ¥,(t)=a, and Y, (1) =b,, 05(k—-1)<t <05k, fork=1, ..., 20). Next,
we determined the range of possible @’s that satisfy the constraint 1+@ v, (x, )y ,(x,) 20 for
all x, and x,, We then used a nonlinear optimijzation routine (Microsoft Excel Solver) to
determine the values of a; and b, that maximize the range of possible correlations, subject
to X a, = 0 and I b, = O (the latter constraints are necessary to ensure the uniqueness of a;
and b,). The result was the following range: —65<p <.65. If the analyst believes that

the correlation lies outside this range, then the FGM distribution cannot be used. Thus,




FGM distribution cannot be used. Thus, even though the FGM class was explicitly
designed for flexibility, it still imposes serious restrictions on the range of possible

correlations.

C. LITERATURE REVIEW

Many techniques are available for generating random numbers from univariate
non-normal distributions; see Devroye [3] for a comprehensive survey. In the case of
multivariate distributions, some techniques are available when particular distributions are
fully specified (see Johnson [4]). However, our concern in this paper is with partially
specified multivariate distributions. Some algorithms in the literature were derived
assuming that the marginal distributions are fully specified, while other algorithms are
based on the assumption that only the marginal moments (up to some order) are
specified. The various algorithms also differ in the degree to which dependencies among
variables are specified. Most algorithms require only the correlation matrix, but a few
require higher-order product moments (i.e., moments of the form E(XFX?) for positive
integers p and ¢ with p+g>2). For example, Parrish [5] presented a method for
generating random variables from multivariate Pearson distributions, but his method

requires knowledge of all product moments to fourth order.

Extending the ideas of Fleishman [6], Vale and Maurelli [7] developed a clever
algorithm for generating correlated non-normal variables when the first four marginal
moments (i.e., mean, variance, skewness, and kurtosis) are specified. They first generate
correlated normal variables with an appropriate intermediate correlation matrix. They
then apply cubic transformations to the normal variables, thereby fitting the four
marginal moments. The cubic transformations convert the intermediate correlation
matrix into the final, desired correlation matrix. They provide a system of non-linear
equations to determine the intermediate correlation matrix from the desired correlation
matrix. However, because polynomials in normal variables have infinite range, Vale and
Maurelli’s algorithm cannot be applied to distributions with bounded supports (e.g., the
beta or triangular distributions often encountered in cost analysis).

Li and Hammond [8] developed an approach where the marginal distributions
rather than the marginal moments are specified. Their approach is, in one sense, more
general than Vale and Maurelli’s, because the marginal distributions may have bounded
supports. Once again, the major difficulty arises in determining the intermediate
correlation matrix from the desired correlation matrix. Although Li and Hammond
provide a formal solution to this problem, their solution entails inversion of double-

4




the integrand itself requires numerical approximation. As a practical matter, these
integral equations may require a great deal of computation time if a high degree of
accuracy is desired. In addition, because it treats each correlation independently, Li and
Hammond’s procedure will not necessarily yield an intermediate correlation matrix that is

positive definite.

Lurie and Goldberg [9] developed an algorithm specifically designed to simulate
random variables with bounded supports. Using a spectral decomposition, we first
decompose the correlation matrix into its eigenvalues and eigenvectors. Because the
eigenvectors are just linear functions of the original variables, their means, variances, and
bounds are easily determined. Using these moments and bounds, a beta distribution is
then fit to each eigenvector. Although the eigenvectors are uncorrelated by construction,
they are not independent because domain restrictions on the original variables impose
additional restrictions on the bounds of the eigenvectors. We found that a good
approximation to the distributions of the domain-restricted beta variables could be
obtained by using truncated beta distributions. The original random variables are then

reconstructed as linear combinations of these truncated beta distributions.

The current paper improves upon our previous algorithm, in that the desired
marginal distributions are reproduced exactly (within the sampling error of the underlying
normal generator) rather than being approximated by linear combinations of truncated
beta distributions. Moreover, the current method applies equally well to distributions
with either bounded or infinite support, and even to “mixed” cases where some of the

marginal distributions have bounded support and others have infinite support.




II. METHODOLOGY

A. THE PROPOSED SIMULATION ALGORITHM

A practical method for simulating correlated random variables should ideally have
the following properties:

« the restrictions on the correlation matrix should be minimal, so it will usually
be possible to generate a multivariate distribution compatible with the
information the user has specified;

o the same method should apply to any arbitrary selection of marginal
distributions;

e the simulated distribution should not depend on the order in which the
variables are generated;

« the method should preserve the user-specified bounds, if any; and

« the method should be easily programmable on a computer and should not be
so computationally intensive as to render it impractical.

The method proposed in this paper is an adaptation of an idea originally proposed
by Li and Hammond [8]. Their procedure analytically relates the correlations of the
desired variables to the correlations from a multivariate normal distribution. The desired
correlations are obtained by transforming random variables from a multivariate normal
distribution to a multivariate distribution with the desired marginals. This result is easily
achieved by noting that if X has a standard normal distribution, then ®(X) has a uniform
distribution on the interval (0,1) and, consequently, F “[®(X)] has the desired
distribution, where F is the desired cumulative distribution function (c.d.f.). If the desired
output variables are standardized to have zero mean and unit variance, then the

correlation between any pair of variables z; and z; can be written as:
P, = LL F @)1 F O ) 0(x, x 1) dx, dx; , 1Si< j<k,

where ¢(x;,x j|r,.j) is the bivariate normal density with correlation r;;, and k is the number

of variables.




Li and Hammond then propose to determine the input correlations r;; that satisfy

the equations:
p, = [ F @) E 10010, x,1r) d dx,; =0, (1)

for all 1<i< j<k. Although this method was proposed almost 20 years ago, it has
never been widely used in practice because it is difficult to apply, and because the
pairwise determination of normal correlation coefficients does not necessarily result in a

positive semi-definite matrix.

The idea behind the approach taken in this paper is similar to the one just
described, except that the multivariate normal correlations are determined empirically.
The proposed procedure greatly simplifies the generation of correlated non-normal
random variables. In fact, the examples presented later in the paper were calculated in a

Microsoft Excel spreadsheet.

The steps in our approach are as follows:

Step 1. Generate n simulations of k independent unit-normal variables. Array
these simulated values in an #n X k matrix, denoted X. This matrix remains fixed

throughout the iterations.

Step 2. To obtain starting values, compute the Cholesky decomposition of the
correlation matrix! (Rp) desired for the final set of output variables; that is,

determine the lower-triangular matrix Lo such that R, = L,Lj.

Step 3. Linearly transform each row of independent normal random variables
% =(X,,...,x;) into multivariate normal random variables ¥, =(y;,-..,¥;) With
correlation matrix Ry. This is accomplished by the transformation Y, = XLI),
noting that if X ~ N(0,I), then Y, ~ N (O,LOLT)) =N(0,R,). The matrix Yo has
the same dimension as X (n X k).

1 A correlation matrix is symmetric and positive semi-definite, or else a linear combination of variables

could be found with negative “variance’ Var(cTy) =¢ Re>0 for all vectors ¢# 0. In fact, a

correlation matrix is positive definite unless a linear dependency exists (i.e., unless some linear
combination of the variables has zero variance). Any symmetric, positive-definite matrix may be

factored as R = LL" for L lower-triangular (Gill, Murray, and Wright [10], p. 36). The Cholesky
decomposition is essentially the positive square root of a matrix. Finally, if the user-specified
correlation matrix is not positive definite, a procedure described in a later section of this paper can be
used to replace the user-specified matrix with a “nearby” matrix that is positive definite.



Step 4. Transform each element of Y, using the unit-normal c.d.f., u; = D(y,)
foreachi=1,...,n,andj=1, ..., k. The columns of the n x k matrix Up = {u;}
are uniformly distributed and correlated, but the correlation is no longer equal to
R, because the unit-normal transformation is non-linear.

Step 5. Invert the marginal uniform random variables generated in the previous
step using the inverse c.d.f.’s of the desired marginal distributions. Let F; denote
the desired c.d.f. for the jth random variable. Then apply the transformation

v, = F7'(u;) = F;'[®(y;)] to the elements of the jth column of Uo, j =1, ..., k.

The columns of the n x k matrix Vo = {v;} will have the desired marginal
distributions, but the correlations are further distorted from Ro.

Step 6. Compute the empirical correlation matrix of the columns of Vo. To do
so, first standardize the columns of Vo

where ¥, and s, are the empirical mean and standard deviation, respectively, of
Bl

the jth column of Vo, j=1, ..., k. The empirical correlation matrix is computed as
R, =Z]Z,, which is necessarily positive semi-definite and most likely positive
definite.2 For use in the next iteration, compute the Cholesky decomposition of
the empirical correlation matrix, R, = LL].

Step 7. Evaluate a distance measure D between the empirical correlation matrix
R, and the target correlation matrix Ro. Note that steps 3 through 7 define a
mapping from a lower-triangular matrix L to a distance measure D.

Step 8. Using a non-linear optimization routine, determine the elements of the
lower-triangular matrix L that minimize the distance measure D computed in the
previous step, subject to the constraints that ¢, {/=1 foralli=1, ..., k, where ¢, is

the ith row of L. The constraints ensure that a valid correlation matrix is
generated at each iteration.3 '

The empirical correlation matrix is at least positive semi-definite, because any quadratic form reduces
T L . .
to a sum-of-squares: cTRlc = cTZO Lyc= (Zoc)TZOC = '21 (Zoc)i 2 0. This quantity can equal
]:

zero only in the unlikely event that a linear dependency exists among the columns of V.
During step 3 of the pth iteration, columns of independent normal variables are transformed by the

matrix L pto induce the correlation matrix R P = L pL-;. This factorized representation of the

correlation matrix is sufficient because a correlation matrix is symmetric and positive semi-definite,
and any such matrix is subject to a Cholesky decomposition. Thus, we may restrict our search to
lower-triangular matrices, for which roughly half the elements have known values (i.e., zero).
Regarding constraints, Marsaglia and Olkin [11] have shown that, beyond symmetry and positive
definiteness, the only additional constraints on a correlation matrix are unit diagonal elements.




Note that only one set of simulations is performed in this process—that of n X k
independent unit-normal variables, which can be accomplished quickly and easily by
means of the Box-Muller transformation (or by using whatever normal random number
generator one has on the computer). At each iteration of the process, the transformations
are updated and reapplied to the same simulated values. The random variables generated
at the end of this process will have the desired marginal distributions and correlation
matrix, provided the problem is feasible (i.e., provided a multivariate distribution with
such a correlation structure can be reproduced via marginal transformations of a
multivariate normal distribution). If the problem is not feasible, the procedure will yield
a correlation matrix as “close” (in terms of the distance measure) as possible to the target

matrix. In practice, most problems should be feasible unless the target correlation matrix

is saturated with near-perfect dependencies.

Although the minimized value in step 8 of the algorithm is often known in
advance to be zero, our interest centers instead on the lower-triangular matrix L at which
the minimum occurs (i.e., the arg-min). This matrix is essential to the linear
transformation in step 3 that induces the correct correlation matrix among the normal
random variables. This situation is analogous to finding the root of an equation—the

value of the function is known in advance, but we wish to locate the point at which that

value is achieved.

The measure we use to determine the “distance” between the calculated and

desired correlation matrices is the root mean square error (RMSE) between the

corresponding matrix elements, ie.,

o

(pij _ﬁij)z
(k-1) ’

k
2
RMSE =||—

il
—_

where p, is the desired correlation between elements i and j, f),.j is the calculated
correlation, and k(k-1)/2 is the number of unique off-diagonal elements in the correlation

matrix.

In most applications this distance measure should be minimized at zero, that is, it
should be possible to exactly achieve the desired correlation matrix. However, situations
could conceivably occur where it may not be possible to achieve the desired correlation
matrix by means of the proposed transformations of multivariate normal random
variables. In these situations, the output matrix will be the best that can be achieved with
the proposed methodology. In the many examples we tried with this method, the

10




transformations appeared to distort the original correlation matrix very little, so the
desired correlation matrix was always achievable. This observation makes the target

matrix a logical choice as a starting value for the original correlation matrix.

B. A MODIFIED SIMULATION ALGORITHM

Because our approach seeks to bring the correlations among the sample (simulated)
random variables into conformity with the population (theoretical) correlations, the
sample and population correlations will closely match, if not agree, regardless of the
number of simulations performed. This property of our simulation method differs from
standard simulation procedures, where sampling variability can result in the sample

correlations being quite different from the population correlations.

The following example illustrates the importance of maintaining sampling
variability in small samples. Suppose you have devised a procedure for testing the
equality of parameters of several beta distributions. You are interested in the power of
your testing procedure, particularly how power varies with the sample size. You expect
your test to have low power to reject slight differences among beta distributions in small
samples. You evaluate the power of the test through a Monte Carlo simulation, using the
algorithm of this paper to generate beta variates with known parameters, then applying
your test and attempting to discern the parameter differences. If our algorithm did not
maintain sampling variability, you would reach far too optimistic an assessment of the

power of your test in small samples.

The sampling variability in our procedure is reflected in the calculation of the
lower-triangular matrix L, which will vary with each generation of the simulated
independent normal random variables. That is, the matrix L is always adjusted to
transform the new random variables so that the output correlation matrix is the one
desired. Theoretically, the lower-triangular matrix L should depend solely on the
population correlation matrix and be invariant with respect to the simulated independent
normal random variables. If the matrix L is fixed, then the output correlation matrix will
depend on the simulated random variables and may differ from the correlation matrix

desired.

11




The theoretical equivalent to our method requires the determination of the lower-

triangular matrix L such that

22(;)., [ [ 10w F G100, x,1r,) d, dx )7

=1

k(k—1)

is minimized, where {r,} =R = LLT. When this minimization problem was programmed
on a VAX 4000 Model 100 computer, however, one hour of central processing unit

(CPU) time elapsed before completing even a single iteration. Thus, the theoretical
determination of L is clearly impractical.

Although we cannot completely remove sampling variability from the empirical
computation of L, we can modify our procedure by removing as much of the sampling
variability as possible from the original, normally distributed observations. We will do

this by adjusting the original observations so that they have exactly zero means, unit

variances, and zero correlations.

First, the observations are standardized as

where Xx; and s, are the empirical means and standard deviations of x;, i = 1, ..., n,
j=1,..,k Thcn the Cholesky decomposition MM of the sample correlation matrix R

among the z’s is computed and the observations are further transformed by
Y=M'Z (2)

to yield an array of uncorrelated observations. Applying our simulation algorithm to the
observations generated in equation (2) will yield variables with the theoretical correlation
structure. The algorithm will also determine the elements of the lower triangular matrix
L needed to induce the appropriate correlations among the random variables generated in
equation (2). Finally, steps 3 through 8 of the simulation algorithm are repeated to yield

output random variables with sampling variation reflected in the computation of the

sample correlation matrix.

12




C. GENERATING A POSITIVE SEMI-DEFINITE CORRELATION MATRIX

In many real-world situations, not enough data are available to accurately compute
a correlation matrix. In this case, the correlations are frequently derived from expert
opinion, often the combined opinions of many experts. The result is frequently an
inconsistent correlation matrix, i.e., one that is not positive semi-definite.  This
inconsistency can also occur if the pairwise correlations are estimated empirically but are
not all based on the same set of observations. The latter situation could arise if the
number of observations on which all variables are observed is too small, and the analyst

wishes to use all the available information to estimate each correlation.

To account for the possibility of an indefinite “correlation” matrix, we have
developed a procedure for adjusting the user-specified matrix so that it is positive semi-
definite and remains as “close” as possible to the original matrix. The procedure, which
is similar to steps 3 through 8 of the simulation algorithm, determines the elements of a
lower triangular matrix L that minimize the weighted quadratic distance between LL'
and the original correlation matrix R. To ensure that LL' is a correlation matrix, the

diagonal elements of LL" must be constrained to equal unity4:

Minimize ”R -LL' ” = 2 z -5;)’
{U} i=1 j=1
subject to: s il, ljh, ,J=1.k , 3
h=1
s; =1 i=1..k.

In equation (3), r;j are the elements of R, l,-j are the elements of L, and sjj are the
elements of LL". The weights {w;;} are supplied by the user, and must be strictly
positive to ensure a positive distance when R and LL' are distinct. The user should
supply a much larger weight to any particular correlations that are known with certainty
(at least an order of magnitude larger). When a larger weight is applied, the minimization

routine sets 7; approximately equal to s;; to avoid an otherwise large penalty.

To illustrate the matrix adjustment procedure, consider the following indefinite

matrix:

4 As previously indicated, any correlation matrix may be factored as LLT ; conversely, any matrix of the

T . . . .
form LL' may serve as a correlation matrix as long as the diagonal elements are constrained to equal
unity. Expressing the correlation matrix in this form guarantees positive definiteness, and reduces the
number of unknowns roughly in half compared to a dense (i.e., non-triangular) form.

13
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R= 91,
1

h © =~
o -

and suppose the weights for all elements are equal to 1.0. Based on the criterion in (3),

the closest positive semi-definite correlation matrix is:

1 871 517
R,=[871 1 871}
517 871 1

Now suppose the analyst is very uncertain about the correlation between the first
and third elements and specifies the weight for that correlation as .001, and weights for

the remaining correlations as 1.0. The closest positive semi-definite correlation matrix is

now:
1 9 619
R,={ 9 1 9
619 9 1

To the level of precision indicated, our procedure now places the entire adjustment on the

relatively uncertain correlation between the first and third elements.

14




III. EXAMPLES

A. EXAMPLE 1

The first example considers the first-unit cost of a hypothetical 600-pound ultra-
high frequency (UHF) satellite, consisting of ten components. Using “expert” opinion,
we placed triangular distributions on each cost element to represent the risk associated
with a hypothetical new satellite. The parameters of the triangular distributions are

shown in Table 1.

Table 1. First-Unit Cost for 600-pound UHF Satellite

Cost (Thousands of Dollars)

Lower Upper Standard

Cost Element Bound Mode Bound Mean Deviation
Attitude Control 1,676 1,942 2,453 2,024 161
Electrical Power Supply 3,469 4,329 5,287 4,362 371
Telemetry, Tracking, and Command 860 1,014 1,671 1,182 176
Structure and Thermal 366 596 963 642 123
Apogee Kick Motor 201 314 402 306 41
Digital Electronics 5,433 8,431 8,828 7,564 758
Communications Payload 2,228 2,425 3,713 2,789 329
Integration and Assembly 544 691 1,011 749 97
Program Support 10,410 12,428 17,400 13,413 1,469
Launch Operations and Orbital Support 639 914 1,030 861 82

We estimated the target correlation matrix from historical data, but data were missing
for some of the costs elements of some of the historical systems. In an effort to maximize
sample size, we estimated each individual correlation from the largest possible subsample

containing data on the corresponding pair of cost elements. Thus, the exact subsamples varied
from one correlation to another. The resulting correlation matrix {pg}was indefinite,

containing one negative eigenvalue and all others positive. We applied the procedure
described in the previous chapter to replace this indefinite matrix with a “nearby” positive
semi-definite matrix, {p}j} . Our procedure adjusted all of the eigenvalues and, in particular,
replaced the single negative eigenvalue with the value of zero, resulting in an adjusted
correlation matrix that was positive semi-definite (but not positive definite). This result

occurred because our procedure attempts to minimize the distance between the adjusted and
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unadjusted correlation matrices. Any larger adjustment, yielding a strictly positive eigenvalue,

would have increased the value of the distance measure.

Using Li and Hammond’s procedure, we solved equation (1) to determine the
correlations among normal variables necessary to achieve the adjusted correlations among
the transformed variables.5 Li and Hammond’s procedure adjusts each correlation
individually, mapping the adjusted target correlations {p}j} into the corresponding
normal correlations {r;}. We have observed empirically that the normal correlations
{r;} differ only slightly from the adjusted target correlations {p:j}. In this particular

instance, {r;} differed from {p:j} in that the zero eigenvalue was replaced by a negative

value. Thus, the normal correlation matrix resulting from Li and Hammond’s procedure
was indefinite (i.e., logically inconsistent).5

Although this example may appear pathological, we believe that it actually
represents a common situation in cost analysis. Correlations among cost elements are
typically estimated either from unbalanced data sets (as in the example above), or else
from expert opinion. In either case, the target correlation matrix is likely to be indefinite,
so that the adjusted target matrix is only positive semi-definite. Li and Hammond’s
solution for the normal correlations is more likely to be indefinite when the adjusted

target matrix is positive semi-definite than would be the case if the eigenvalues were

strictly bounded away from zero.

Next, we used our own algorithm to generate 1,000 simulations of the desired
multivariate distribution, using the procedure outlined in steps 1 through 8 in the previous
chapter. Our simulation algorithm resulted in a positive-definite solution because the
sample, rather than the population, correlations were estimated. Thus, the correlations

among the simulated values were identical to the population correlations (i.e., RMSE = 0).

Tt remains to show that the simulated marginal distributions are consistent with triangular
distributions having parameters given in Table 1. Plots of the empirical distribution function for
each simulated variable against' its theoretical counterpart revealed a close fit in each case. The
worst-fitting case (the case with the largest maximum difference between the theoretical and

empirical distributions), corresponding to Program Support Costs, is shown in Figure 1.

5 For each pair of variables, the solution to equation (1) was determined using International
Mathematical and Statistical Language (IMSL) subroutines DTWODQ to perform the double
integration and DZREAL to find the roots. All calculations were performed using double-precision

arithmetic.
6 Li and Hammond ([8], p. 561) were well aware of this possibility.
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Figure 1. Theoretical and Empirical Distributions of Program Support Cost
(1,000 Simulations)

The fact that, in the worst case, the two distributions are almost indistinguishable
implies that the fits are close in every case. Accordingly, the summary statistics
associated with each distribution also correspond closely. Comparisons of the true
population parameters with those estimated from the simulation are shown in Table 2. It
is clear from Table 2 that the simulation has done a good job of reproducing the
population parameters. Furthermore, the distributions are all approximately triangular

and have the desired correlations (to two decimal places).

Table 2. Comparison of True and Estimated Parameters From Example 1

Mean Standard Deviation
Cost Element True Estimated True Estimated

Attitude Control 2,024 2,025 161 162
Electrical Power Supply 4,362 4,365 371 374
Telemetry, Tracking, and Command 1,182 1,179 176 177
Structure and Thermal 642 644 123 125
Apogee Kick Motor 306 305 41 41
Digital Electronics 7,564 7,554 758 770
Communications Payload 2,789 2,788 329 321
Integration and Assembly 749 748 97 95
Program Support 13,413 13,424 1,469 1,453
Launch Operations and Orbital Support 861 861 82 83
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B. EXAMPLE 2

The second example uses the same data as the first, but we generated only 100
simulations and we employed the modified simulation algorithm (see Section ILB) to take
account of sampling variability. Comparisons of the true population parameters with those
estimated from the simulation are shown in Table 3. A plot of the worst-fitting distribution
(corresponding to Program Support Costs) is shown in Figure 2, and a comparison of the
population correlations with the sample correlations is displayed in Figure 3. The 45°-line in
Figure 3 represents the situation where the population and sample correlations are equal.
When applied to the adjusted normal random variables (i.e., adjusted to have zero means, unit
variances, and zero correlations) the RMSE was 0 (to two decimal places). However, when

applied to the original normal random variables, the RMSE increased to 0.08.

Table 3. Comparison of True and Estimated Parameters From Example 2

Mean Standard Deviation
Cost Element True Estimated True Estimated

Attitude Control 2,024 2,014 161 163
Electrical Power Supply 4,362 4,308 371 388
Telemetry, Tracking, and Command 1,182 1,154 176 166
Structure and Thermal 642 627 123 121
Apogee Kick Motor 306 296 41 45
Digital Electronics 7,564 7,344 758 872
Communications Payload 2,789 2,753 329 310
Integration and Assembly 749 736 97 97
Program Support 13,413 13,372 1,469 1,427
Launch Operations and Orbital Support 861 852 82 80

Probability Cost is not Exceeded

Il | | I
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Figure 2. Theoretical and Empirical Distributions of Program Support Cost (100 Simulations)
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C. EXAMPLE 3

For this example, we generated a five-variate distribution where the first two

marginals were triangular, the third and fourth marginals were beta, and the last marginal

was log-normal. The desired correlations among these variables are shown in Table 4.

Table 4. Correlation Matrix for Example 3

Variable 1 2 3 4 5
1 1.00 0.73 0.64 0.40 0.15
2 0.73 1.00 0.90 0.34 0.48
3 0.64 0.90 1.00 0.29 0.42
4 0.40 0.34 0.29 1.00 0.18
5 0.15 0.48 0.42 0.18 1.00

The simulation algorithm was applied to 1,000 normal random deviates until the

exact correlation matrix was attained (i.e., the RMSE was 0). A plot of the worst-fitting

distribution (Beta Variable #1) is shown in Figure 4 and the actual and estimated

moments are compared in Table 5.
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Figure 4. Theoretical and Empirical Distributions of Worst-Fitting Variable
(1,000 Simulations)

Table 5. Comparison of True and Estimated Parameters From Example 3

Mean Standard Deviation

Variable True Estimated True Estimated
Triangular Variable #1 C 2,667 2,671 514 504
Triangular Variable #2 8,000 8,017 1,472 1,466
Beta Variable #1 3,565 3,601 1,113 1,109
Beta Variable #2 9,486 9,477 1,278 1,259
Log-Normal Variable 10,000 10,010 2,000 1,953

This example shows that our simulation algorithm can be applied to a “mixed”
case, where not all marginal distributions are of the same form. The computations in this
example took considerably longer than in the two previous examples, approximately one
hour on 2 VAX 4000 Model 100 computer. The increased computation arose not because
of the “mixed” nature of this example, but rather because the beta and log-normal c.d.f.

inversions (step 5 of the algorithm) lack closed-form solutions.
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