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Abstract 

The Unmanned Space Vehicle Cost Model Revision 7 (USCM 7) contains Cost Estimating Relationships 

(CER) for spacecraft bus components and subsystems, integration and test, and program level costs.  Each 

of the USCM 7 CERs contains inherent regression errors (expressed in percent error) that represent the 

uncertainty associated with the CER.  These uncertainties are used in risk analysis to capture the total 

estimating uncertainty of a spacecraft bus estimate. Although the CER uncertainties are not independent, 

they are either incorrectly modeled in a risk analysis as uncorrelated independent variables or through 

educated guesses of their true values because the correlation between these subsystem errors have not been 

published with the USCM 7 CERs.  In this paper the correlation coefficients from the differences between 

normalized actual cost data from the USCM 7 database and results from USCM 7 subsystem CERs are 

determined and used to determine their effects on the uncertainty in bus cost.  The total bus estimate 

uncertainty using the calculated correlation coefficients are compared against an uncorrelated case to show 

the effects of the correlation between the random variables. 
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Introduction 
 
All estimates and measurements are subject to uncertainty.  The analyst tasked with providing a cost 

estimate for a spacecraft bus can use libraries of Cost Estimating Relationships (CER), like those in the 

Unmanned Space Vehicle Cost Model Revision 7 (USCM 7), to provide both a point estimate for each 

subsystem and an associated error for that estimate.  In the case of USCM 7 subsystem CERs, the 

documentation includes a percentage error of that subsystem cost estimate1.  This paper answers the 

following questions: 

• How should the uncertainty of the entire estimate be calculated? 

• What is a correlation coefficient? 

• What are some of the potential causes of correlation? 

• How are correlation coefficients derived? 

• What are the correlation coefficients for the uncertainties in the USCM 7 database? 

• How are the correlation coefficients used in analysis? 

• How do the statistical uncertainties of the CERs and correlation coefficients contribute to the 

uncertainty of the entire estimate? 

Uncertainty of an Estimate 

Once a point estimate has been determined using the subsystem CERs in the USCM 7 database, the 

individual subsystem nonrecurring and recurring estimates is multiplied by its respective percentage error 

to form a vector of uncertainties.  The uncertainty of the entire estimate is then calculated using Equation 1, 

which provides the total cost variance2.  The standard deviation, or sigma, of the total cost is merely the 

square root of the total cost variance.  The first terms are merely the sum of the variances (squares of the 

standard deviation of the individual WBS elements), and the second term calculates the sum of the 

                                                           
1 There are actually two types of CERs available in USCM 7:  Mean Percentage Error (MPE) and Mean 
Unbiased Percentage Error (MUPE).  The errors in both of these sets of CERs are expressed as a 
percentage of the estimate.  For this discussion, the MUPE weight-based CERs were used.   
2 Assuming input errors are neglected and that program will behave like others in the database. 
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covariances.  This term is often neglected, but it has a major impact on the total cost variance.  We need 

correlation to accurately capture the statistical effects of adding uncertainties. 

Equation 1:   Total cost variance =  , where σkj
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and ρjk are the standard deviations of WBS elements j and k respectively and the correlation 
between them. 

The Correlation Coefficient 

There are two types of correlation coefficients used in estimating aggregate uncertainty: Linear (Pearson's 

product-moment) correlation and (Spearman's) rank correlation.  In this paper, linear correlation 

coefficients are derived and used because the sum of random variables depends on the Pearson's product-

moment correlation and not the Spearman rank correlation.  Here are brief definitions of the two: 

• Pearson's product-moment correlation is a measure of the linearity between two random variables. 

• Spearman's rank correlation is a measure of the monotonicity between two random variables. 

In the cases where the uncertainties between two variables are linear, there is little difference between the 

two.  On the other hand, when the uncertainties have a non-linear relationship the answers can be 

remarkably different.  Commercial spreadsheet-based Monte Carlo simulations (e.g., Crystal Ball ® and 

@Risk®) use rank correlation and may give a different answer than analytically derived using linear 

correlation.  In the case of this analysis, the aggregate uncertainty using a spreadsheet-based Monte Carlo 

tool was 50% higher than analytically determined. 

Potential Causes of Correlation 

When correlation is used in an estimate of uncertainty or risk analysis, there is a natural tendency to 

attribute the causes of the correlation to the value of the coefficients.  Correlation does not necessarily 

imply a causal relationship between two random variables.   It is merely a measure of the tendency of one 

WBS element to cost more than estimated while another WBS element is over or under estimated.  In the 

case where two elements are both under or over estimated, we say that these pairs of WBS elements are 

positively correlated, and in the case where one is over estimated and the other is under estimated, we say 
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that they are negatively correlated.  While a causal relationship will drive random variables to be 

correlated, the reverse is not always true. 

There are several potential causes of correlation and reasons why WBS elements are correlated.  Here are 

just a few examples encountered: 

• Tradeoffs - This is the case usually attributed to negative correlation.  There are rather few 

negatively correlated pairs of uncertainties produced in this paper. 

• Schedule / Network dependency - This is a very popular reason attributed to correlation.  It 

certainly has a large effect, but other forces may be more important. 

• Common contract, material and labor factors - Labor and material shortages, supply chain 

problems with a common vendor, may cause components or major subsystems to all overrun (or 

under run). 

• Database normalization and bucketing schemes - This is a cause that is often overlooked by 

estimators that may have one of the most significant impacts.  Learning curve assumptions, 

bucketing of weights and costs, application of inflation (e.g., Office of the Secretary of Defense, 

Air Force, Navy or Consumer Price Indexes) significantly affect the conversion of actual costs in 

then-year dollars to base-year dollars and may skew the data in the database. 

• Requirements dependency - This is a cause typically attributed to the correlation between critical 

bus subsystems and payload subsystems. 

• Choice of cost drivers - Different cost drivers used in CERs will produce different uncertainties 

and thus affect the correlation between pairs of residual errors. 

• Over-design and margin - Some systems are over designed with plenty of margin to accommodate 

requirements creep or performance shortfalls, and some are not. 

• External and internal influences - Budget constraints, other programs competing for resources, and 

catastrophic failures (e.g., launch failures) may affect most or all of the costs of a particular 

program's subsystem costs in a database.  This would clearly influence the correlation. 

The cost community cannot yet determine the combined effects of all causes of correlation, and a database 

that captures all of these effects most likely does not exist.  Since it is extremely difficult to enumerate and 

all these causes, let alone attribute a correlation coefficient to all of them, it is reasonable to assume that 
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correlation does not necessarily imply causality nor should causality necessarily define correlation.  There 

is a capacity to determine them from data without attributing them to a particular set of causes. 

Deriving Correlation Coefficients 

The correlation coefficients developed in this paper were derived using lists of actual subsystem 

nonrecurring costs, recurring costs, and weights for all 26 spacecraft programs in the USCM 7 database.  

The first step in the analysis is to use USCM 7 CERs to calculate estimates for subsystem nonrecurring and 

first unit costs for all of the programs in the database.  The next step is to calculate the residuals between 

actual costs and estimated costs.  Once this was completed, pair-wise subsystem residuals were used in 

Equation 2 to calculate the sample Pearson product -moment correlation, r. 

 

Equation 2:    rxy
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, where x and y are CER 

residual pairs, xi and yi are individual program residual data, and xm and ym are and the mean of the 
residuals respectively. 
 

If the two variables exactly follow a linear relationship (with no scatter), then the correlation coefficient r = 

+1 or -1.  Similarly, if there is no correlation between x and y, then the numerator should be zero and so 

should r. 

Since the number of elements on the sample population (N=26) is considered a small sample, the sample 

correlation values Once the sample correlation coefficients were derived, their confidence intervals were 

derived to of the s .  This probability is difficult to compute, but it can be done.  Table 1, which shows 

percentage probabilities, answers this question. The rows represent N, the number of data points, and the 

columns are labeled with values for ρ. 

For example, we used 26 data points, so a set of 20 to 30 data points would be uncorrelated at the 0.5% to 

2.5% (1 ) confidence level if their correlation coefficient came out to 0.5.  These numbers were taken 

from Reference 1.  The table confirms that the correlation coefficients derived in this analysis are 

reasonable. 
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the Z statistic is approximately normally distributed with mean and standard 

deviation  
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Table 1.  Confidence Levels of Sample Correlation Coefficients 

 r 
N  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
3 100 94 87 81 74 67 59 51 41 29 0 
4 100 90 80 70 60 50 40 30 20 10 0 
6 100 85 70 56 43 31 21 12 5.6 1.4 0 
8 100 81 63 47 33 21 12 5.3 1.7 0.2 0 

10 100 78 58 40 25 14 6.7 2.4 0.5 <0.1 0 
15 100 72 47 28 14 5.8 1.8 0.4 <0.1 <0.1 0 
20 100 67 40 20 8.1 2.5 0.5 0.1 <0.1 <0.1 0 
30 100 60 29 11 2.9 0.5 <0.1 <0.1 <0.1 <0.1 0 

USCM 7 Correlation Coefficients 
 
The distribution of the values of sample correlation coefficients in the USCM 7 database is shown in Figure 

1 below.  The correlation coefficients range from approximately -0.4 to 1.0 with the most likely value being 

near 0.0.  The shape of the histogram is not normal, as might be expected, and the correlation coefficients 

are predominately positive. 

Histogram of Correlation Coefficient Values (N=171)
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Figure 1.  Histogram of Correlation Coefficient Values 
 
Table 2 shows the result of the derivation of the correlation Matrix for UCSM 7 Weight-Based, MUPE 
Subsystem CERs.
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Table 2.  Sample Correlation Matrix for UCSM 7 Weight-Based, MUPE Subsystem CERs
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ADCSNR 1.000 -0.067 -0.096 -0.035 0.035 0.012 0.413 0.605 0.121 -0.095 0.983 -0.122 0.099 0.564 0.139 0.089 -0.047 -0.057 0.092
AGENR 1.000 -0.028 0.525 -0.079 0.127 0.091 -0.230 -0.125 0.416 0.001 0.085 -0.043 -0.163 -0.189 0.033 0.146 0.151 0.232
COMMNR 1.000 0.888 0.884 0.966 0.762 0.281 0.850 -0.166 0.305 -0.176 0.157 0.368 0.884 -0.158 0.109 0.037 -0.004
EPSNR 1.000 0.265 0.604 0.409 0.003 0.337 0.237 0.011 -0.275 0.076 0.342 0.021 -0.049 0.465 0.123 0.035
IATNR 1.000 0.721 0.615 0.331 0.747 -0.037 0.391 -0.133 -0.028 0.501 0.265 -0.145 0.113 -0.014 -0.189
PROGNR 1.000 0.697 0.222 0.868 -0.065 0.145 -0.191 -0.044 0.444 0.329 -0.191 -0.000 -0.125 0.019
STRCNR 1.000 0.837 0.761 -0.001 0.117 -0.214 -0.113 0.418 0.173 -0.018 0.220 -0.103 0.069
THERNR 1.000 0.077 -0.200 0.662 -0.171 -0.053 0.514 0.102 -0.010 -0.063 -0.165 0.092
TT CNR 1.000 -0.149 0.475 -0.118 -0.071 0.519 0.294 -0.178 -0.111 -0.095 0.022
ADCST1 1.000 -0.100 0.614 0.421 -0.262 -0.354 0.543 0.676 -0.029 0.655
AKMT1 1.000 -0.006 0.292 0.855 0.286 0.176 -0.003 -0.027 0.052
COMMT1 1.000 0.266 -0.454 -0.088 0.777 0.729 0.126 0.391
EPST1 1.000 -0.150 -0.145 0.381 0.388 -0.007 0.520
IATT1 1.000 0.448 -0.144 -0.224 -0.014 -0.320
LOOST1 1.000 -0.336 -0.097 -0.074 -0.169
PROGT1 1.000 0.421 -0.039 0.481
STRCT1 1.000 -0.175 0.285
THERT1 1.000 -0.140
TT CT1 1.000
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Correlation Used in Analysis 

The correlation matrix and the calculated uncertainties can be combined in Equation 3 to calculate the 

variance of the total estimate3.   For an uncorrelated case, the matrix, ρ, is replaced with the identity matrix, 

I,  (ones on the diagonal and zeros in the off-diagonal elements) to form Equation 4. 

Equation 3: σ=Total
2σ T ρ σ   , where ρ is the Correlation matrix (full matrix), σ  is the 

Vector of standard deviations (cost space), and σT is the Transpose of vector of standard 
deviations (in cost space) 
 
Equation 4: σ=Total

2σ T Ι σ = σT σ 
 

The standard deviation of the total estimate is merely the square root of the variance of the total estimate.  

The next step in this analysis was a comparison of the effects of the correlation on the estimate uncertainty. 

Coefficient of Variation 

The coefficient of variation (COV) is defined in Equation 5 as the ratio of the standard deviation to the 

mean and is a useful measure of dispersion when comparing different estimates.  Table 3 shows the effect 

of correlation on the COV on three estimates of arbitrarily chosen spacecraft programs in the USCM 7 

database.  A comparison of uncorrelated case and correlated case in Table 3 shows an increase in the 

variance and thus the COV for the correlated run. This is to be expected, since the correlation coefficients 

are predominately positive.   

Equation 5: COV =σ/µ    , where σ and µ are the standard deviation and mean of the total 
cost estimate. 
 

It is interesting to note that the COV nearly doubles due to the effect of correlation.  This means that the 

uncertainty of the estimate is twice than would be expected if correlation were not accounted for. 

 

                                                           
3 Equation 3 can be translated to the following Excel functions: 

SIGMA_TOT=SQRT(MMULT(MMULT(TRANSPOSE(SIGMA),RHO),SIGMA)) 

PERCENTILE=NORMDIST(ACTUAL,ESTIMATE,SIGMA_TOT,TRUE) 
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Table 3.  Effect of Correlation on COV 

r=0 PROG1 PROG2 PROG3  r<>0 PROG1 PROG2 PROG3 

NR 
 

0.15 
 

0.15       0.17 
 
NR      0.27  0.27 

 
0.28 

T1 
 

0.14 
 

0.14 
 

0.17 
 
T1        0.23        0.23        0.26 

NR+T1 
 

0.11 
 

0.11 
 

0.13 
 
NR+T1 

 
0.20        0.20        0.22 

 

Percentiles of Actual Costs 
The final step in the analysis was to determine where actual costs from the database fall in relation to 

estimated values with uncertainty.  The results using the same three arbitrarily chosen programs from the 

USCM 7 database are presented in Table 4.  As expected, the increase in variance in the correlated case 

move the actual cost values to the center.  If the actual cost fell below the 50th percentile in the uncorrelated 

case, its percentile would increase in the correlated case, and if the actual cost fell above the 50th percentile 

in an uncorrelated case, its percentile would decrease in the correlated case.  Note that for program 1 the 

percentiles of both the nonrecurring total (NR) and the total estimate (NR+T1) actual costs correspond to a 

very small value (near zero) in the uncorrelated run, but have a small percentage in the correlated run. 

 Table 4.  Effect of Correlation on Percentile of Actual Costs in the Estimate 

r=0 PROG1 PROG2 PROG3  r<>0 PROG1 PROG2 PROG3 
NR 0.0% 90.5% 57.3%  NR 0.8% 75.7% 54.5% 
T1 5.1% 77.6% 28.8%  T1 16.2% 67.8% 35.7% 
NR+T1 0.0% 93.4% 49.4%  NR+T1 0.5% 79.3% 49.6% 
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Effect of Correlation on Percentile Values of Actual Costs
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Potentially Missing Drivers 
It was interesting to note that some of the correlation coefficients were near unity, as shown in Table 5.  

Table 5.  High Correlation Coefficients Between CER Uncertainties 
Error1 Error2 Correlation 
AKMT1 ADCSNR 0.983 

PROGNR COMMNR 0.966 
EPSNR COMMNR 0.888 
IATNR COMMNR 0.884 

LOOST1 COMMNR 0.884 
PROGNR TTCNR 0.868 

IATT1 AKMT1 0.855 
TTCNR COMMNR 0.850 

 
These high correlation values may indicate the presence of hidden relationships between the errors of the 

correlated pairs, which may require further study. 
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