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Multivariate and Non-linear 
Regression Models
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Non-linear Models – Introduction

• To model non-linear relationships with OLS 
regression, the data must first be transformed in 
a way that makes the relationship linear

• All the steps for linear regression may then be 
performed on the transformed data

• The most common forms of non-linear models 
are:
– Logarithmic

– Exponential

– Power
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Linear Transformations

Logarithmic

y = a + b ln x

Exponential

y = a e b x

ln y = ln a + b x

Power

y = a x b

ln y = ln a + b ln x
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• We will use the same data as before, but apply an 
exponential model to it
– Recall that the data failed the White test for homoscedasticity

(p = 0.047)

– In practice, a Power model (linear when take logs of both 
sides) might be called for here, but this is shown in Module 7 
(Learning Curves), so Exponential (linear when take log of y) 
is demonstrated

• The next step is to conduct linear regression analysis 
on the data in semi-log space

• After the analysis is complete, we will transform the 
parameters of the linear equation back to unit space

Example: Exponential Model

6

y = a e b xln y = ln a + b x
a = eln a

b = b

Tip: Exponential 
is rare in practice

7
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Example: Exponential Model

• First we run the regression:

• Then we check the residual plot:
– The residual plot is ambiguous; we expand the 

White test…
– …for a formal determination on homoscedasticity

• Finally, we find the parameters for
the unit space equation:

The regression is nearly 
statistically significant at α = 0.10 

with semi-log space R2 = 0.62

The regression is nearly 
statistically significant at α = 0.10 

with semi-log space R2 = 0.62

a = eln a = e1.34 = 3.81
b = 0.07

Ŷ = 3.81e 0.07X

13

ln y = ln a + b x
y = a e b x

Tip: LOGEST() produces same output, 
however LOGEST coefficients are the 

exponentials of the LINEST coefficients.

Unit-space data 
showing 

exponential trend.
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Example: Exponential Model (Expanded White Test)

White Test Conclusions  
• Homoscedasticity still rejected at α = 0.10 (now not rejected at α = 0.05)
• In practice, could use MLE or Power Model (or the 5% significance 
level), but we will proceed as if OLS assumptions were validated

Next Steps
• Calculate unit-space goodness of fit statistics for apples-to-
apples model comparisons

NEW!



4
PT04

© 2002-2013 ICEAA  All rights reserved.

v1.2

Unit III - Module 8 7

Unit-Space Goodness of Fit Comparison

• These differences are not overwhelming, but the routine serves as a 
reference for comparison of more complicated, multivariate models across 
types

NEW!

Warning: It is unusual for a power or exponential model to have
better unit space than fit space statistics; generally the unit space 
conversion causes these stats to worsen
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Minding the Intercept
• One common mistake when performing OLS 

regression is the omission of a y-intercept in power 
and exponential models when one exists
– This has the effect of causing higher than necessary error in 

the regression

– Fortunately, it can easily be detected by examining the 
relation of the trendline to the data

– It can also be corrected by adding (or subtracting) a constant 
value to (from) the y-values in the data and examining the 
change in the trendline (“the simple way”) or by using Solver 
or other packages (“the elegant way”)

• The example on the next page assumes the data 
follows a power curve with a non-zero y-intercept

“‘To b or Not to b’ The y-intercept in Cost Estimation, R. L. Coleman, J. R. 
Summerville, P. J. Braxton, B. L. Cullis, E. R. Druker, SCEA, 2007.

6

NEW!
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Minding the Intercept - Example
• The plot to the top-right shows the 

actual data as well as the data 
that has been adjusted to take the 
intercept into account 

• The data was adjusted by 
subtracting a constant from all y-
values until the optimal R² was 
achieved

• This constant is the best guess for 
the y-intercept

– A “bowing” of the data in relation 
to the trendline is the symptom 
that led to the belief in an 
intercept

• The plot to the bottom-right shows 
this same graph in log-space

• Adding the intercept greatly 
increases the R² of the regression

– Without intercept: .9162
– With intercept: 1

Power Curve in Log-Space y = -0.2467x + 1.4555
R2 = 0.9162

y = -x - 2E-16
R2 = 1
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The data is “bowed”
meaning it is curved 
differently than the 

trendline

Data “bowing” shows up 
better in this plot

NEW!
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Minding the Intercept - Example

• The ANOVA statistics 
for the two 
regressions are 
shown to the right

• Notice the decrease 
in standard error and 
increase in R2

Regression Statistics
Multiple R 0.957159023
R Square 0.916153395
Adjusted R Square 0.910164352
Standard Error 0.060953166
Observations 16

ANOVA
df SS MS F Significance F

Regression 1 0.568333545 0.568334 152.9716 6.33998E-09
Residual 14 0.052014039 0.003715
Total 15 0.620347583

Coefficients Standard Error t Stat P-value Lower 95%
Intercept 1.455511028 0.018553102 78.45109 6.5E-20 1.415718583
ln x -0.246655725 0.019942786 -12.36817 6.34E-09 -0.289428747

Regression Statistics
Multiple R 1
R Square 1
Adjusted R Square 1
Standard Error 3.68462E-16
Observations 16

ANOVA
df SS MS F Significance F

Regression 1 9.341591866 9.341592 6.88E+31 3.024E-216
Residual 14 1.9007E-30 1.36E-31
Total 15 9.341591866

Coefficients Standard Error t Stat P-value Lower 95%
Intercept 0 1.12154E-16 0 1 -2.40545E-16
ln x -1 1.20554E-16 -8.3E+15 3E-216 -1

Warning: These “perfect”
results are from a toy problem 

using “cooked” data

NEW!
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Non-linear Model Summary
• The same process performed on the exponential 

example applies to other non-linear model types
– The only difference lies in which piece of the data set gets 

transformed
• i.e. Logarithmic take the log of the x data

Exponential take the log of the y data
Power take the log of both x and y

• Other functions can be used to transform data (e.g.,  x, sin x, 
etc.) but logarithms are the most common

⇔
⇔
⇔

Tip: Power models are used 
to analyze learning curves –
they are probably the most 
common use of non-linear 
regression in cost analysis
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Multivariate Regression

• Basics

• ANOVA Revisited

• Adjusted R2

• t and F Summary

Unit III - Module 8 12

AKA Multiple Regression



7
PT04

© 2002-2013 ICEAA  All rights reserved.

v1.2

Unit III - Module 8 13

Multivariate Regression
• If there is more than one independent variable 

in linear regression we call it multivariate 
regression

• The general equation is as follows:

y = a + b1x1 + b2x2 + … + bkxk + ε
– So far, we have seen that for one independent 

variable, the equation forms a line in 2-dimensions
– For two independent variables, the equation forms a 

plane in 3-dimensions
– For three or more variables, we are working in higher 

dimensions which are difficult to display visually in 
Excel.

• The math is more complicated, but the results 
can be easily obtained from a regression tool or 
simple formula (LINEST()) as found in Excel

X

Y

X1

X2

Y
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Multivariate Regression

• In general the underlying math is similar to the 
simple model, but matrices are used to represent 
the coefficients and variables
– Understanding the math requires background in Linear 

Algebra
– Demonstration is beyond the scope of the module, but can 

be obtained from the references

• Some key points to remember for multivariate 
regression include:
– Perform residual analysis between each X variable and Y
– Avoid multicollinearity, i.e., the situation in which high 

correlation among (2 or more) X variables inflates standard 
errors and therefore biases significance tests

– Use the “Goodness of Fit” metrics and significance tests to 
guide you toward a good model

y = a + b1x1 + b2x2 + … + bkxk + ε
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Identifying a Multivariate Regression

y = a + b1x1 + b2x2 + … + bkxk + ε
• In general, theory and sound reasoning should be 

used to determine which variables to include in a 
multivariate model

– Choose variables that are correlated with the dependent 
variable and can be justified; i.e. show correlation and 
causation

– It is hard to ‘prove’ that a model is correctly identified, but 
with correlation statistics and well developed reasoning, a 
model can be shown to be robust

• If a relevant variable is omitted, it may cause b 
estimates to be biased and will increase SSE 
(“omitted variable bias”)

Unit III - Module 8 15
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Unit III - Module 8 16

y = a + b1x1 + b2x2 + … + bkxk

• The Excel output gives the predicted coefficients

Coefficients in Multivariate Regression

^ ^ ^ ^^

Ŷ = 1.4 + 0.3 X1
- 1.1 X2 + -0.2 X3

Equation 
Parameters

Note: LINEST() outputs numbers in 
gray box. Analyst adds labels and 
other calculations. 

Note: LINEST() outputs numbers in 
gray box. Analyst adds labels and 
other calculations. 
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• Mean Measures of Variation

– Mean Squared Error (or Residual) 
(MSE):

– Mean of Squares of the Regression 
(MSR):

Analysis of Variance (ANOVA)

where:

n = # data points

k = # equation variables

The denominator for each of the 
above is called the degrees of 
freedom, or df, associated with 

each type of variation

The denominator for each of the 
above is called the degrees of 
freedom, or df, associated with 

each type of variation

SSR
MSR = 

k

SSE
MSE = 

n – k – 1

3
Variables

15 data 
points
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Excel Demo: ANOVA

( ) knkF −−1,~F = MSR 
/ MSE 

8
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Note: dfresid is 
provided. Dfreg must 
be caclulated using

dfreg = n - dfresid

Note: dfresid is 
provided. Dfreg must 
be caclulated using

dfreg = n - dfresid

Regression Sum of Squares
(SSR): 
The sum of the squared 
deviations between the 
regression line and the 
average

“The explained variation”

Residual or Error Sum of Squares
(SSE):
The sum of the squared 
deviations between the data 
and the regression line

“The unexplained variation”

SST
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Total Sum of Squares (SST):
The sum of the squared deviations 
between the data and the average
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Adjusted R2

• Adjusted R2, or R2
a, adjusts for degrees of freedom

– Can be used to compare coefficients of determination between 
models with different numbers of variables including in the same
model when a variable is considered for elimination due to lack of 
significance

– Can be used as justification for including near-significant variables in 
models if those variable improve the model’s performance
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Warning: negative values of 
R2

a may occur when fitting 
non-OLS trends to data

Tip: SSR+SSE=SST is true only in OLS. In 
general, we have 
R2 = 1-SSE/SST but not R2 = SSR/SST. Note 
also that R2

a can be negative.
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• In multivariate regression, a t test is conducted for each coefficient

• The results provide insight as to which variables add the most value to the prediction of cost
– Adding additional variables will always decrease SSE and increase (unadjusted) R2

– An insignificant t statistic makes a variable a candidate to be eliminated from the regression (can 
compare nested vs. full model using SEE, CV, adjusted R2 and F statistics) 1

– A variable whose p value is greater than 0.5 should almost certainly be eliminated because it is more 
likely than not that its (nonzero) coefficient was observed by chance

Unit III - Module 8 20

t statistics in Multivariate Regression
15

y = a + b1x1 + b2x2 + b3x3 + ε Note: Correlation between the independent 
variables may affect results. High correlation among 
independent variables is often associated with 
multicollinearity and should be avoided. A 
correlation matrix is a good first step to check for 
multicollinearity. The example is expanded later as 
an Advanced Topic.

Note: Correlation between the independent 
variables may affect results. High correlation among 
independent variables is often associated with 
multicollinearity and should be avoided. A 
correlation matrix is a good first step to check for 
multicollinearity. The example is expanded later as 
an Advanced Topic.

1. There are several methods such as stepwise regression for determining the best subset of independent variables.  See the references for more details

The p-values suggest that x2 is highly significant (as is the intercept, which is generally retained regardless of significance 
results). The remaining variables are candidates for elimination.

The p-values suggest that x2 is highly significant (as is the intercept, which is generally retained regardless of significance 
results). The remaining variables are candidates for elimination.
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Calculation of t statistic
• As before, the t statistic for each variable may 

be calculated as ratio of the estimated 
coefficient to the corresponding standard 
error:

• t is also the square root of the partial F 
statistic, F*

ib

i

se
bt
ˆ

=

*Ft =

df
SSE

bbbbabSS

df
SSE

SSRSSRF
FullModel

kiii

FullModel

elReducedModFullModel ),...,,,...,,|( 111* +−=
−

=
Partial sum of squares –

captures the value of 
adding the variable in 

question
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Example Setup:
Set α = 0.05

Hypothesis:

Test Statistic:

P-value: 0.0025
Decision: We reject H0 if the p-value is 

less than the chosen 
significance level (0.05)

Example Setup:
Set α = 0.05

Hypothesis:

Test Statistic:

P-value: 0.0025
Decision: We reject H0 if the p-value is 

less than the chosen 
significance level (0.05)

Unit III - Module 8 22

• An F test is used to determine whether the coefficients of all the 
independent variables are zero

– Depends on the ratio of the MSR to the MSE, called an F statistic

0b :H
0bbb:H

ia

3210
oneleast at ≠

===

140.9
032.0
289.0

MSE
MSRF ===

F stat

y = a + b1x1 + b2x2 + b3x3 Are all coefficients = 0?

We conclude the regression is a good model as a whole.
Note, the results from the t test should still be addressed.

We conclude the regression is a good model as a whole.
Note, the results from the t test should still be addressed.

Since 0.0025 < 0.05 
We reject Ho

This regression as a 
whole is statistically 

significant

The F statistic
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Paring Down the 
Multivariate Regression Model

• You may have a model in which some of the coefficients are 
significant, and some not
– Note: If only the y-intercept is significant, then it is not really a linear model, it 

devolves down to a simple average

• If the F statistic is significant, but only some of the t statistics 
are, then you may be able to achieve a better model by 
removing the non-significant variables
– Re-run the model with the least significant variable excluded

– Compare SEE, CV, F stat, and R2
a for the two models

– Continue the above step until all coefficients are significant

– Compare goodness of fit and significance statistics across all models you’ve 
seen. Using these, and sound engineering judgment, select the final model.

• Only the y-intercept may be non-significant … in practice, it is used “as is” even if it is not 
significant. This is important because without the y-intercept, OLS estimators are not Best 
Linear Unbiased Estimators (BLUE).

Tip: Given logical relationship, near significance, and explained variation, it may be beneficial to keep non-
significant variables in a model.  Such variables should only be retained if they improve d.f.- adjusted metrics

© 2002-2013 ICEAA  All rights reserved.

v1.2

Unit III - Module 8 24

t and F Summary

• The t statistics tell us if each independent 
variable is a good predictor

• The F statistic tells us if the regression as a 
whole is a good model

• In our example, the model was found to be 
significant (large F), but two of the three 
variables were not (small t)

Note: In a regression with one independent variable, 
the F test and t test will yield the same results

Note: In a regression with one independent variable, 
the F test and t test will yield the same results

Tip: If possible, test the resulting model on an independent data set.
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Selecting the Best Model
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Choosing a Model
• We have seen what the linear model is, and 

explored it in depth

• We have looked briefly at how to generalize 
the approach to non-linear models

• You may, at this point, have several 
significant models from regressions
– One or more linear models, with one or more 

significant variables

– One or more non-linear models

• Now we will learn how to choose the “best 
model”
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Steps for Selecting the “Best Model”
• You should already have rejected all non-significant 

models first
– If the F statistic is not significant

• You should already have stripped out all non-useful 
variables and made the model “minimal”
– Variables that do not incrementally contribute to goodness of 

fit, overall model significance, (adjusted) variation explained,
etc. were already removed

• Select “within type” based on (adjusted) R2

– When comparing multivariate regression models, select 
based on adjusted R2, which compensates for the number of 
independent variables

• Select “across type” based on SSE (SEE for 
multivariate models)

We will examine each in more detail…We will examine each in more detail…

© 2002-2013 ICEAA  All rights reserved.
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Selecting “Within Type”
• Start with only significant, “minimal” models 

• In choosing among “models of a similar form”, R2 is the 
criterion

• “Models of a similar form” means that you will compare 
– e.g., linear models with other linear models

– e.g., power models with other power models

Tip: If a model has a lower R2, but has variables that are more useful for decision 
makers, retain these, and consider using them for CAIV trades and the like

R2 = 0.95 R2 = 0.79 R2 = 0.90
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Select the 
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model with the 

highest R2

16
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Selecting “Across Type”
• Start with only significant, “minimal” models 

• In choosing among “models of a different form”, the SSE 
in unit space is the criterion (SEE if degrees of freedom 
change; CV if dependent variables changes)

• “Models of a different form” means that you will compare:
– e.g., linear models with non-linear models

– e.g., power models with logarithmic models

• We must compute the SSE by:
– Computing Ŷ in unit space for each data point

– Subtracting each Ŷ from its corresponding actual Y value

– Sum the squared values, this is the SSE

• An example follows…

14

Warning: We cannot use R2 to compare models of 
different forms because the R2 from the regression is 

computed on the transformed data, and thus is 
distorted by the transformation

© 2002-2013 ICEAA  All rights reserved.
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Option 2. Linear ModelOption 2. Linear ModelOption 1. Power ModelOption 1. Power Model

• Suppose we want to choose between the following 
models for a method of estimating cost:

Selecting “Across Type” Example

We choose the power model because it has the lower unit-space 
SSE (SEE if the two had different number of vars.)

We choose the power model because it has the lower unit-space 
SSE (SEE if the two had different number of vars.)
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R2 = 0.86
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• Suppose we want to choose between the following 
models for a method of estimating cost:

Comparing Nested Models Example

• Reduced model eliminates the least significant variable (b3). We can 
see by removing the least significant variable R2, SEE, CV, 
significance F and adjusted R2 all improve when b3 is removed. A 
(possible) next step would be to also eliminate b1 and compare 
again.

NEW!
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Regression Summary
• Regression analysis is a powerful tool in cost 

analysis, particularly for developing CERs
• Two of the most important results of OLS 

Regression are:
– Statistical significance
– Uncertainty

• This module has covered:
– The basic math behind the analysis 
– How to interpret the results from a regression tool such as 

Excel
– How to apply the results and choose among models

• Many other regression techniques extend beyond 
the scope of this module, but can be found in the 
resources provided
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Resources – Textbooks
• An Introduction to Mathematical Statistics and It’s Applications, 

3rd ed., Richard J. Larsen and Morris L. Marx, Prentice Hall, 
2000

• Applied Linear Regression Models, Neter et al., Irwin Inc., 1996
• Introductory Econometrics with Applications, R. Ramanathan, 

Dryden Press, 1997
• Applied Regression Analysis, N.R. Draper and H. Smith, Wiley, 

1998
• Regression Analysis by Example, S. Chatterjee, A. Hadi, and B. 

Price, Wiley, 1999
• Regression With Graphics, L. Hamilton, Brooks/Cole Publishing, 

1992
• Econometric Models and Economic Forecasts, R. Pindyck and 

D. Rubinfeld, McGraw-Hill (College Division), 1997 
• Using Econometrics - A Practical Guide, A. H. Studenmand, 

Addison-Wesley, 2000
• A Guide to Econometrics, P. Kennedy, MIT Press, 1998

© 2002-2013 ICEAA  All rights reserved.
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Resources – Papers
• “The Multicollinearity Problem: Coping with the Persistent Beast”

Kevin Cincotta, David Lee, LMI, February 2007

• “Modern Techniques of Multiplicative-Error Regression,” Steve 
Book, SCEA, 2006

• “The Minimum-Unbiased-Percentage Error (MUPE) Method In 
CER Development” Shu-Ping Hu, DoDCAS, 2001

• “Why ZMPE When You Can MUPE?” Dr. Shu-Ping Hu, Alfred 
Smith, SCEA/ISPA, 2007

• “Testing for the Significance of Cost Drivers Using Bootstrap 
Sampling,” Daniel I. Feldman, SCEA/ISPA, 2010

• “New Research in General Error Regression Model (GERM) 
Significance Testing,” Kevin Cincotta, SCEA/ISPA, 2010

• “The Business Case for Bootstrapping:  When You're Stuck with 
Incomplete Data, Here's How You Make it Work!” Brett Gelso, 
Glenn Grossman, Eric Druker
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Related and Advanced Topics
• Geometric Interpretations

• Derivation of Formulae

• White Test

• ANOVA Redux

• The Bivariate Normal Distribution 
and the Geometry of Regression

• Correction Factors

• Multicollinearity

• Non-OLS Models

• Maximum Likelihood Estimation
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Geometric Interpretations

• Means = “center of gravity”
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Geometric Interpretations

• Deviations from mean sum to zero

XX i −

YYi −
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Geometric Interpretations

• Lemma:  

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35

X = 23.89

Y = 83.33

( )( ) YXnYXYYXX
n

i
ii

n

i
ii −=−− ∑∑

== 11



20
PT04

© 2002-2013 ICEAA  All rights reserved.

v1.2

Unit III - Module 8 39

Geometric Interpretations

• Deviations from mean sum to zero

YYi −

X

Y

XX i −
YYi −

XX i −

YYj −

XX j −

XX j −

YYj −
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Deriving the Equations
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Deriving the Equations (cont’d.)
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“easy to 
remember”“easy to 

calculate”
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• Perform the regression as usual to generate squared errors (ε2)
• Regress ε2 on each regressor, squared regressor, pairwise

crossproduct, and an intercept
– For 1 x: Regress on intercept, x ,x2

– For 2 x’s: Regress on intercept, x1, x2, x1
2, x2

2, and x1x2

– For 3 x’s: Regress on intercept, x1, x2, x3, x1
2, x2

2, x3
2, x1x2, x1x3, and x2x3

– For k x’s: m+1 = C(k+2,2) = (k+2)(k+1)/2 (including intercept)

• Calculate the R2 from the auxiliary regression
• White statistic = nR2 follows a chi square distribution with (m-1) 

degrees of freedom where m = number of estimated 
parameters (not including intercept) from auxiliary regression

• Reject the null hypothesis of homoscedasticity and conclude 
that OLS cannot be used if p-value is less than a specified 
critical value α (say, 0.10)

NEW!
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Sums of Squares Shortcuts
• These formulae are more computationally 

efficient:
– Total Sum of Squares (SST):

– Residual or Error Sum
of Squares (SSE):

– Regression Sum
of Squares (SSR):

• Can you verify the identity using these?
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R2 and Reducing CV
• We said that one of the goals of running CERs is to 

reduce CV, and that R2 is the percent explained 
variation
– But how are the two related?
– We can show that the reduction of CV is a function of R2

SST
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Zero-Intercept R2

Warning: When the regression line is forced through the origin (0), R2 and 
R2

a in the trendline can be different than in the LINEST or macro output

LINEST() function
b 0.8072 0.0000a

SEb 0.1050 #N/A SEa
R2 0.9366 2.4152SEE

F 59.0874 4d.f.
SSR 344.6673 23.3327SSE

SST
SSE12 −=R is preferred to                  ,  because 

can only be used when 

SST
SSR2 =R

SST
SSR2 =R SSTSSESSR =+ Only the case for OLS 

regression in fit space



24
PT04

© 2002-2013 ICEAA  All rights reserved.

v1.2

Leverage

• Leverage is a measure of how far an 
observation is from the average values of all 
the independent variables in the equation

Unit III - Module 8 47

∑ −
+×± 22

2

df α/2, XnX
)X-X(

n
1SEEtŶ

∑ −
++×± 22

2

df α/2, XnX
)X-X(

n
11SEEtŶ

C.I. 
Formula

P.I. 
Formula

= Leverage

An observation is considered 
a potential outlier with respect 

to X if its leverage value is 
greater than 2*(p/n), where p 
is the number of parameters 

and n is the number of 
observations.

An observation is considered 
a potential outlier with respect 

to X if its leverage value is 
greater than 2*(p/n), where p 
is the number of parameters 

and n is the number of 
observations.

NEW!
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Regression Distributions

Unit III - Module 10

Chi Square

Normal

Chi Square / df

Chi / √df

UnivariateUnivariate BivariateBivariate

sums of squares

t df
N

/χ
=

Cost data

SST

Variance

Std dev Chi Square

Normal

Chi Square / df1

Chi / √df

t df
N

/χ
=

Slope

SSR

MSR

Std error

F(df1, df2)

Chi Square

Chi Square / df2

SSE

MSE

NormalData 
Points

The assumption of normality 
drives all the other distributions

The assumption of normality 
drives all the other distributions

48NEW!



25
PT04

© 2002-2013 ICEAA  All rights reserved.

v1.2

Unit III - Module 8 49

The Geometry of Regression
• The following charts show the geometry of regression 

by building up a picture
– The picture provides a mental image that aids in 

understanding the regression equation
– This visual framework has potential applications in risk 

analysis

• The below facts enable us to derive the picture
– For any two jointly distributed variables, there is a regression

line
• The slope is:

b = ρ*(σy / σx)
• The y intercept is:

a = μy- ρ(σy / σx) * μx

– If the variables are joint bivariate normal, then ρ is the 
correlation coefficient

9

Let’s look at the graph…Let’s look at the graph…
10
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The Geometry of Bivariate Normality
and the implications for Regression

(μx, μy)

σx

σy

2σx

a

μx

σy

σx

μy

x

y

2σy

First construct a 
box 2σ by 2σ

centered at the 
means
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(μx, μy)

σx

σy

2σx

μx

σy

σx

μy 2σy

Intercept a varies with 
slope, μx, and μy

The Geometry of  Bivariate Normality
and the implications for Regression

2σx

ρ=1

ρ=-1

Dispersion varies with ρ

a= μy- ρ(σy / σx) * μx

a

Slope m varies with ρ, σx, σy

x

y

ρ=0

R
an

ge
 o

f i
nt

er
ce

pt
s

R
ange of slopes

y = ρ(σy / σx) (x- μx) + μy
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a= μy- ρ(σy / σx) * μx

y = ρ(σy / σx) (x- μx) + μy

(μx, μy)

σx

σy

2σx

μx

σy

σx

μy 2σy

This line has the 
“unseen” slope …

The slope that would 
be true if ρ = 1

The Geometry of  Bivariate Normality
and the implications for Regression

ρ=.75

a

x

y

This line has the “seen”
slope …. given ρ=.75



27
PT04

© 2002-2013 ICEAA  All rights reserved.

v1.2

s = standard 
error of the 

estimate

Correction Factors

Unit III - Module 8 53

• When converting CERs developed in log-linear space to not log-
linear space, the CER will predict closer to the median than the mean
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ePF

P = # of estimated 
coefficients

n = sample 
size

s = standard 
error of the 

estimate

r0 = leverage 
value in log 

space if xo is a 
vector of 

independent 
variables in the 

data matrix

9
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Multicollinearity
• Multicollinearity occurs when there is a strong linear relationship among 

two or more independent variables 
– The model form of this linear relationship must match the model form of the 

regression in order for multicollinearity to occur
• Some symptoms that multicollinearity may be occurring are:

– Large changes in the values of the regression coefficients when another 
variable is added or deleted

– Regression coefficients having an opposite sign from what intuition predicts
– Two (independent) variables thought to be similar have large (in absolute 

value) but “opposite” signs
– Variables expected to be significant are not
– A high overall R² with several non-significant independent variables
– High Variance Inflation Factors (VIFs) or Variance Amplification Factors 

(VAFs)
• The existence of Multicollinearity has a couple of adverse effects on the 

results of OLS:
– Biases coefficients and inflates their standard errors

• This in turn biases t-tests and p-values; also makes them imprecise
– Makes it difficult to understand the effect each independent variable has on 

predicting the outcome
• It is important to note that multicollinearity does not affect the reliability of the 

model predictions; it simply biases individual coefficient values and their estimated 
significance.

NEW!
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Multicollinearity
• One of the most robust methods to address multicollinearity is to find the 

VIF of each independent variable
• The VIF of an independent variable is defined as                where           

is the coefficient of determination when the dependent variable is 
regressed against all other dependent variables

– The VIF of β is the multiplicative factor (>=1) by which the variance of β is 
increased due to correlation among the regressors

– All information needed to compute the VIF for each variable is found as part of 
Excel’s Linest() function

• In general, a VIF of over 10 indicates a severe enough problem to take a 
second look. If no VIF exceeds 4, you may reasonably conclude that there 
is no issue with multicollinearity.

• If multicollinearity is clouding the results of a regression model, consider 
removing the variable with the largest VIF and re-running the model, 
understanding that the variable to be removed may be the intercept!

• Continue until no VIF exceeds 4 (ideally) or 10 (if desperate)

2
BUR −

β
)1(

1
2

β−− UR

Note: VIFs may be calculated in this manner in standard OLS regression. For zero-
intercept regression, R2

U-β  can’t be used because it assumes a constant term. 
However, the VIF can be also be calculated as SEβj

2/SEβj
2

native where
SEβj

2
native = SEE2/[(n-1)Var(Xj)]
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Multicollinearity - Example
Before removing multicollinearity

After removing multicollinearity

Regression Statistics
Multiple R 0.977595073
R Square 0.955692126
Adjusted R Square 0.933538189
Standard Error 3.390877227
Observations 10

ANOVA
df SS MS F Significance F

Regression 3 1488.03271 496.0109 43.138704 0.000187089
Residual 6 68.9882902 11.498048
Total 9 1557.021

Coefficients Standard Error t Stat P-value VIF*
Intercept 1.619602821 2.704279863 0.5989036 0.571141
x1 3.645827501 3.059240194 1.1917428 0.2783581 67.15169364
x2 -0.856380194 3.226126284 -0.2654515 0.7995466 67.07078039
x3 2.146718658 0.306108425 7.0129356 0.0004193 1.036809323

Regression Statistics
Multiple R 0.977328896
R Square 0.955171771
Adjusted R 0.942363705
Standard E 3.157722838
Observation 10

ANOVA
df SS MS F Significance F

Regression 2 1487.222505 743.6113 74.5758 1.90735E-05
Residual 7 69.79849467 9.971214
Total 9 1557.021

Coefficients Standard Error t Stat P-value VIF*
Intercept 1.489038566 2.47633097 0.601308 0.56659
x1 2.840039751 0.353958217 8.023658 8.94E-05 1.036596958
x3 2.147881586 0.285031425 7.535596 0.000133 1.036596958

Notice neither 
independent variable is 

significant

x2 vs x1

y = 0.9406x + 0.1467
R2 = 0.9851

0

2

4

6

8

10

12

0 2 4 6 8 10 12
x1

x2

x2
Linear (x2)

• The VIFs for x1 and x2 are high, 
indicating that multicollinearity is 
present
– This is further verified by scatter 

plotting them together (see below)

• By rerunning the regression with 
each of the variables removed, 
the best regression is found

*VIF’s were computed separately, not as part of Excel ANOVA results
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Multicollinearity – Ridge Regression
• Ridge regression is one of several ways of regularizing a regression 

model so that all the independent variables may remain in the analysis
– Should mainly be used when there is extremely high correlation between the 

independent variables

• In ridge regression, a ridge variable is added to the SSE expression, 
such that solutions with inflated SEβ values are no longer optimal

• Advantages of Ridge Regression
– Reduces the standard errors of the estimated coefficients

– No independent variable is removed from the analysis

• Disadvantages of Ridge Regression
– Model estimates will be biased!

– Coefficients lose some of their interpretability

– Set the ridge too high, and estimates are biased beyond recognition (recall: 
multicollinearity does not bias overall model estimates). Set it too low, and 
the multicollinearity problem is not remedied.

Warning: Ridge regression is 
trial-and-error intensive!
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A Very Brief Overview of Two Non-
OLS Regression Techniques

Weighted Least Squares Regression
Multiplicative Error Regression

*These slides are meant as a top-level overview of these techniques, not an 
instruction guide. For more detailed information, seek the resources provided in the 
Resources section.
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Non-OLS Regression Techniques
Weighted Least Squares

• Weighted Least Squares regression is similar to Ordinary 
Least Squares in that it still works by minimizing the sum 
squared error
– The difference is instead of treating the errors associated with the data points 

equally, certain points are weighted

– One common method is setting         to 
• Thus giving higher weight to points with lower variance in measurement of the x’s. 

When (and only when) this weighting convention is used, WLS estimators are 
BLUE.

• WLS regression is useful in many cases
– To compensate for a violation of the homoscedasticity assumption of OLS 

(funnel-shaped residual plots) 
– When certain data points are believed to be more correct or applicable than 

other data points
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• OLS seeks to minimize the additive error of the regression
– Y = axb + Ɛ

• However, non-linear functions may exhibit multiplicative error instead
– Y =  (axb)· Ɛ

• When this is the case, multiplicative error techniques must be used
– Examples include MUPE and ZMPE
– Papers on these techniques are listed in a special section on the resources slide

• When prediction intervals around OLS-transformed regressions are produced 
they demonstrate a multiplicative error pattern as well

Non-OLS Regression Techniques
Multiplicative Error Regression

Multiplicative Error

X 

Y 
Additive Error 

X 

Y 
Multiplicative Error

X 

Y 
Multiplicative Error

X 

Y 
Additive Error 

X 

Y 
Additive Error 

X 

Y 
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• If you believe the function to be linear but still have issues 
with heteroscedasticity, maximum likelihood estimation 
(MLE) may be in order

• This generalization of OLS accounts for non-constant 
error term variances

• MLE solutions reduce to OLS solutions when variance is 
held constant, so MLE estimators are OLS estimators 
when OLS assumptions hold

• MLE estimators are asymptotically BLUE for large data 
sets; even with heteroskedasticity, as long as other OLS 
assumptions hold (e.g. zero-mean, normal i.i.d. error term)

• If s is constant, log likelihood objective function = Σ{ln(1/σ)
– ε2/2σ2}  is maximized when SSE is minimized

• Must specify σ2 as a function of x
• Other remedies for heteroscedasticity include generalized 

least squares (GLS, a generalization of WLS) and 
transformation to log space

Non-OLS Regression Techniques:
Maximum Likelihood Estimation 

NEW!


