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Preface 

 
 

This textbook is intended to supplement the Reliability, Maintainability, and Availability 
for Engineers course class presentation.  Professor Virgil Rehg originally developed this 
material for the Air Force Institute of Technology School of Systems and Logistics course, 
QMT 372 Reliability. 
   
Any errors can be attributed to the undersigned.  Comments for improvement would be 
appreciated. 
 
 
Richard A. Di Lorenzo, 
Professor of Systems Engineering Management 
Defense Acquisition University Mid-West Region 
3100 Research Blvd., Pod 3, Third Floor 
Kettering, Ohio 45420 
 
E-mail:  Richard.DiLorenzo@dau.mil 
 
Commercial Voice: 937-781-1036 
 
Commercial Fax: 937-781-1090 
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Reliability, Maintainability, and Availability (RMA) For Engineers: Description 

 
This course is a tailored and updated sub-set of the (former) AFIT School of 
Systems and Logistics QMT 372 Reliability course. It is tailored to comply 
with NAVSEA Port Hueneme Division request for an off-the-shelf RMA for 
Engineers course.  
 
The course also: 

1. Provides the participant with an understanding of the principles and 
assumptions of reliability, maintainability, and availability (RMA). 
Emphasizes a study of the time-to-failure distributions used in 
reliability: normal, exponential and Weibull.  

2. Covers reliability allocation and prediction techniques for equipment 
and systems; reliability growth and reliability qualification testing, 
including the development of  O.C. (operating characteristic) curves 
and the use of relevant Military Handbooks for reliability testing. 

3. Includes the binomial and Poisson distribution applications to 
reliability.  

 iii



This page intentionally left blank 
 
 

 iv



Chapter 1 
 

INTRODUCTION TO RELIABILITY 
 

Table of Contents 
 

Section Title Page 

1.1 Why Study Reliability? 1-1 

1.2 Definitions 1-1 

1.3 Maintainability 1-3 

1.4 Bathtub Curve 1-5 

1.5 System Requirements 1-7 

1.6 Summary 1-8 

1.7 Appendix 1-9 
 
 
1.1.  Why Study Reliability?
 
 Anyone who has owned a car, a TV set, a washing machine, or 
any kind of modern equipment knows why reliability is important. 
 
 Just imagine you are riding in a car on a trip.  One of the 
last things you want to have happen is for the engine to stop 
running, the headlights fail if it is at night, the radiator to 
overheat, a tire to blowout, or anything else that could prevent 
you from having a successful trip.  To avoid situations such as 
these, design engineers and reliability engineers work together 
early in the design stage of the equipment to design and develop: 
 

− a cooling system that maintains a constant temperature in 
all environments 

− tires that do not fail and provide a long life, 
− an engine that will last a long time and have a low chance 

of failure in all environments; 
− a lighting system that is not affected by moisture, heat, 

cold, mildew, vibration, age, shock, 
 
so that cooling system, the tires, the engine, and the lighting 
system work, and continue to work, in all environments that could 
be experienced during the trip.  Similar efforts are used in the 
design and development of other systems in the vehicle, e.g., the 
hydraulic system, steering system, power system, exhaust system, 
starting system, and so on. 
 
1.2.  Definitions 
 
 The examples in the preceding paragraph should illustrate 
why reliability is important and some of the potential problems 
that must be overcome in the design.  The reliability engineer's 
job is to help an organization produce a product that meets the 
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customers' requirements.  A summary of what reliability entails 
can be seen from the formal definition of reliability: 
 

RELIABILITY:  Reliability can be described as a discipline 
related to the design, development, test, and manufacture of 
an item, so that it successfully performs a certain task, 
under specified conditions, for a certain length of time or 
number of cycles with a specified probability. 

 
 The words task, conditions, time, and probability are key 
words in the definition.  
 
 The task is the job the equipment is designed to perform.  
It could be transporting people, keeping food cold, removing dirt 
from clothes, etc., depending on the equipment being designed. 
 
 The conditions are the environments that the equipment will 
experience at some time during its life which includes performing 
its task.  Conditions include vibration, temperature, humidity, 
altitude, shock, sand and dust, etc. 
 
 Time is the length of the mission.  This can be in seconds, 
hours, days, years, etc.  Time 
may be different for different 
parts of the system.  But not 
every item of the system is 
measured in time, some are 
measured in cycles.  A switch, 
for example, may be required to 
turn off and on several times 
during a mission, where each 
on-off sequence is called a 
cycle. 
 
 Probability is a numerical 
value that expresses the 
proportion, or per cent of the 
time the equipment will perform 
its mission successfully.  It 
is called the probability of 
success, or the reliability for a mission of "t" hours, R(t).  
This number should be high, that is, close to 1.0, or 100%.  This 
probability is illustrated graphically on the probability density 
function (p.d.f.) as the area under the curve and to the right of 
the mission duration. Figure 1.1 shows a special case – the 
exponential density function.  
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Figure 1.1 Graphical Illustration 
of Reliability 

 
 The words design, develop, test and manufacture, may lead 
you to believe that reliability applies only to new equipment.  
This is not the case, reliability techniques can be applied to 
equipment that is being repaired or modified, and can also be 
applied to services that are performed. 
 
 It is just as important that equipment being repaired be 
brought to the same level of reliability as it was when it was 
new, as it is to get reliability in new equipment.  This involves 
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maintainability. 
 
  
1.3. Maintainability
 
 Maintainability must be considered in conjunction with 
reliability because preventive and/or corrective maintenance is 
performed on most equipment throughout the equipment's life.  And 
you want the equipment to be at least as reliable after the 
maintenance as it was before the maintenance.   For example, the 
oil in a car is changed to extend its life.  The expectations 
related to this type of maintenance are that:  the correct oil is 
used, the right amount is put in the car, the oil plug is screwed 
in correctly and tight, a new oil filter is installed, and 
nothing else is damaged in the performance of this maintenance.  
You would also expect that this job will be completed in a 
certain length of time.  The formal definition for 
maintainability is as follows: 
 
 MAINTAINABILITY:  The probability that an equipment will be 
retained in, or restored to, a specified condition in a given 
period of time, when maintenance is performed in accordance with 
prescribed procedures and resources. 
 
 The key words are:  probability, retained/restored, 
condition, time, procedures, and resources. 
 
 Time in this definition refers to time it takes to perform 
the maintenance and is a function of the equipment design.  This 
means that the length of time that a maintenance task is going to 
take must be considered when equipment is designed.  Usually two 
times are identified during the design stage: the average time to 
perform maintenance; and the maximum time it will take to repair 
almost anything on the equipment.  A high probability, usually 
around 95%, is attached to this second time.  For example, the 
user of the equipment may have a requirement that the equipment 
be designed so that the average repair time is two hours, and 
that 95% of all possible repair actions can be completed within 
five hours. 
 
 Time in the maintainability definition includes the time it 
takes:  getting access to specific parts of the equipment, 
trouble shooting (diagnosing), making a repair and/or a 
replacement, calibrating, testing, and closing up the access 
panels. 
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 The word probability is used to express the proportion (or 
per cent of the time) that a maintenance task is performed in a 
specified time.  For 
example, suppose you are a 
mechanic in the motor pool. 
  
 Your supervisor brings 
you a task and asks what is 
the chance that it will be 
finished within an hour.  
If you say 80%, you are 
saying that there is a good 
chance of doing the work in 
an hour; but if you said 
99%, there is a very high 
chance that you will be 
finished in an hour.  For 
any task, and for any 
repair time, there is a 
probability the job will be 
done in that time.  Figure 1.2 is a graphical illustration of 
where the probability occurs on the probability density function 
for maintainability. 
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Figure 1.2 Graphical Illustration of 
Maintainability 

 
 The probability related to any repair action depends on 
several factors, including: the way the equipment is designed, 
the tools available, the skill of the person doing the repair, 
the environment, technical manuals, the ease of doing trouble 
shooting and getting access to the critical area, and the 
motivation of the person doing the repair. 
 
 Retained in, or restored to are words used in reference to 
preventive or corrective maintenance.  The expectation is that 
when either type of maintenance is performed, the equipment is 
brought back to its original condition. 
 
 Condition can refer to the original design level.  However, 
for some systems it is expected that there will be some 
degradation of the system.  A car, for example, is not expected 
to have the same pep at 100,000 miles that it had at 5,000 miles. 
 Therefore, condition can be a relative term depending on the 
system. 
 
 Procedures are the instructions and methods used to perform 
maintenance.  This includes manuals that describe how to perform 
maintenance, and the standard procedure for the maintenance.  
Procedures can be a function of the environment.  For example, 
certain maintenance tasks can be performed outside in warm 
weather but must be done inside when the weather is cold or if it 
is raining.  Hence there is another step in the process that 
could affect the maintenance time. 
 
 Resources include the skills of the individuals performing 
maintenance, and the tools used by these individuals.  Skill
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level and type of tool affect the maintenance time. 
 
 Maintainability is an important discipline for both 
reliability engineers and design engineers.  However, this text 
is devoted primarily to reliability models and methods.  It is 
important that maintainability is included at this time because 
it is important that reliability engineers be aware of the affect 
that the design has on the maintenance process and system 
availability.  
 
1.4 Bathtub Curve
 
 The bathtub curve 
gets this name from its 
shape.  It is a graph 
of the failure rate 
over the life of a 
system.  In the late 
fifties, as part of the 
AGREE (Advisory Group 
for the Reliability of 
Electronic Equipment) 
study, it was 
discovered that the 
failure rate pattern 
over the life of 
electronic equipment 
could be explained by 
the bathtub curve.  The 
horizontal scale of the bathtub curve is time, and the vertical 
scale is failure rate.  The bathtub curve can be divided into 
three sections, the infant mortality stage, the useful life 
stage, and the wear out stage.  Mechanical systems usually do not 
have a constant failure rate; hence, their life curves have a 
different shape. 
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Figure 1.3 Bathtub Curve 

 
INFANT MORTALITY:  The infant mortality stage is so called 
because the failure rate is high just as it is at birth for human 
beings.  For equipment, the failure rate is high because of 
errors made in the manufacturing process.  If the manufacturing 
process could build systems without making mistakes, there would 
be no infant mortality stage; the useful life part of the curve 
would start at time zero. 
 
 The types of mistakes made during the manufacturing stage 
include the use of wrong parts during assembly, using parts that 
do not meet requirements, using unskilled and/or untrained 
operators to manufacture parts or build assemblies, purchasing 
low quality raw materials, using inadequate procedures, using the 
wrong tools, or making any kind of a mistake that could impact 
the manufacturing and assembly process that could cause the 
system to fail in use.  See Figure 1.3. 
 
 To eliminate the infant mortality stage of the bathtub 
curve, errors made in the manufacturing process must be 
eliminated.  However, the errors are a symptom of a deeper 
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problem that needs attention, the lack of quality.  To improve 
quality requires a sincere effort to improve processes throughout 
the organization and a change in the cultural climate which must 
start at the top. 
 
 This is not a simple task; it means that management must be 
involved in creating a vision of where the organization is headed 
and how it is going to operate in the future.  This vision must 
be communicated throughout the organization and be shared by the 
workers.  There must be a plan that gets the organization working 
toward the vision, and workers must be empowered to make changes 
that improve the quality of the processes. 
 
 For statistical purposes, the infant mortality stage of the 
bathtub curve can be described by the Weibull distribution. 
 
USEFUL LIFE: The middle part of the bathtub curve in Figure 1.3 
is the useful life stage.  When the useful life is a horizontal 
line, the failure rate for the system is constant.  This line 
represents an average, implying that there are times when the 
failure rate is higher than the average and times when the 
failure rate is lower than the average.  A corollary would be 
driving one-hundred miles in two hours, which means you averaged 
fifty miles per hour.  But that does not mean that at every 
instant of time you were going fifty miles an hour.  Sometimes 
you may have been going sixty, and at other times forty, but on 
the average you were going fifty. 
 
 The instantaneous failure rate is the failure rate at a 
specific point in time, and it is also called the hazard rate, 
h(t). 
 
 The height of the useful life portion of the bathtub curve 
corresponds to the failure rate of the system.  Ideally, this is 
the failure rate designed into the system.   
 
 The time at which the useful life ends is the system’s life; 
it is the time when wear-out begins.  There are mathematical 
models that can be used to predict when the useful life may end, 
that is, when wear-out begins.  However, these models should be 
improved once you have actual failure times.   
 
 During the useful life stage of systems with a constant 
failure rate, the probability of failing is the same at any point 
along the useful life line.  Hence, an item that just entered the 
useful life stage and an item that is almost at wear-out would 
have the same failure rate.   
 
 The useful life stage of the bathtub curve can be described 
by the exponential distribution if the failure rate is constant, 
and by the Weibull distribution if the failure rate is not 
constant.  However, it should be noted that the Weibull can even 
be used when the failure rate is constant. 
 
WEAR OUT:  The wear out stage of the bathtub curve has an 
increasing failure rate and this means that the chance of failure 
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increases. 
 
 The wear-out phase can be delayed by a good preventative 
maintenance plan.  By preventing failures, the wear-out phase can 
be pushed further into the future. 
 
 The wear out stage can be defined by the normal distribution 
or the Weibull distribution. 
 
 
1.5.  System Requirements
 
 To design, develop and produce a reliable product involves a 
strategic plan.  It requires: 
 

1. Complete and clearly defined requirements from the 
customer. 

 
2. A practical design based on customer’s needs, in which 

reliability prediction models are used to make trade-offs 
between various design choices. 

 
3. A design that can be easily maintained at a low cost. 

 
4. Accurate historical data. 

 
5. A reliability development and growth testing program that 

identifies design weaknesses. 
 

6. A reliability testing program to prove the adequacy of the 
design under actual conditions, or a simulated environment 
that duplicates actual conditions. 

 
7. A manufacturing process built on the concept of continuous 

improvement; and the use of statistical methods as a means 
of reducing process variation. 

 
8. A culture in the organization that creates an environment 

conducive to communication, team work, and high quality 
levels in all processes. 

9. A corrective action system capable of identifying root 
causes of problems quickly and effectively. 

 
10. A management team that empowers the work force, is 

supportive and willing to listen to new ideas, and 
considers the employees as its most important asset. 

 
11. A management philosophy in the organization committed to 

continuous improvement. 
 

12. An organization driven by a vision that benefits the 
workers, customers, suppliers, and society. 

 
 There may be organizations that produce reliable equipment 
without using a management style that practices these twelve 
points.  But these organizations succeed in spite of themselves 
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and could be even more effective if they adopted some of the 
concepts in the twelve points listed above.  In general, an 
organization that follows these points should have a better 
chance of producing reliable products, have less turnover, 
communicate more effectively, be a healthier organization, and 
have a better chance for long term survival. 
 
1.6.  Summary
 
 The purpose of this section is to give the reader an 
overview of what is involved in producing reliable equipment. 
Strong efforts must be made during the design stage and in 
establishing a high quality manufacturing capability.  In the 
past, most of the effort has been to concentrate on design and 
give less attention to quality.  However, from various studies it 
has been shown that more failures in operation are caused by the 
manufacturing process than by the design process. 
 
 The remaining sections of the text are statistical in 
nature.  However, the approach is practical rather than 
theoretical.  Math models will not be developed, instead, models 
that have been developed will be used to show how they apply to 
design, development, testing, and the manufacturing of reliable 
products. 
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1.7.  Appendix 
 
THE BIG PICTURE 
 
 The purpose of this appendix is to discuss the "big 
picture," to show how the reliability and quality models and 
techniques used in this course are related.  The big picture is 
an overview of the course content in terms of the models and 
techniques taught during the course and their application 
relative to the acquisition process. 
 

COURSE CONTENT 
 
 The course content can be divided into the following 
categories: 
 

− Statistical models used in R/M 
− Reliability and Maintainability models and techniques 
− Planning for Quality 
− Management of the R/M process 
− Maintenance Concept 

 

STATISTICAL MODELS USED IN R&M: 

MODEL APPLICATION 

Probability Rules Prediction, testing 

Discrete Models:  

Binomial Prediction, testing, confidence 
statements, sampling, control 
charts, computing reliability 

Poisson Testing, OC curves (Operating 
Characteristic), setting 
inventory levels, computing 
reliability, control charts 

Hypergeometric Sampling 

Continuous Models:  

Exponential Allocation, prediction, 
computing reliability, 
confidence statements 

Weibull Analyze data, confidence 
statements, prediction, testing 
(not part of course) 

Normal Sampling, control charts 

Log-Normal Maintenance prediction (not 
part of this course) 
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RELIABILITY & MAINTAINABILITY MODELS AND TECHNIQUES: 

Allocation (apportionment) 

− Equal apportionment model 

To distribute a system 
requirement throughout the 
system (allocations starts 
with the system requirement 
and you apportion down, level 
by level, until you reach the 
part level in a system) 

Prediction To estimate the reliability of 
a system (prediction starts at 
the lowest level of the system 
for which you have data and 
you compute probabilities 
until you reach the system 
level) 

Reliability Development Growth 
Testing (RDGT) via Test, 
Analyze and Fix (TAAF) 

− Duane model 

To raise the Mean Time Between 
Failures (MTBF) up to an 
acceptable level 

Reliability Qualification Test 
(RQT) 

To demonstrate, during the 
Development Phase, that the 
system reliability meets the 
system requirement 

Production Reliability 
Acceptance Test (PRAT) 

To demonstrate that production 
units meet the system 
reliability requirement 

Environmental Stress Screening 
(ESS) 

To find units that have not 
been manufactured correctly so 
they may be fixed before they 
are tested and/or sent to the 
customer 
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PLANNING FOR QUALITY: 

In Design: 

FMEA (Failure Mode and Effects 
Analysis) 

To prevent failures 

FMECA (Failure Mode, Effects and Criticality Analysis) 

Design Review To prevent problems in design, 
production, testing, etc. 

Human Factors Engineering To ensure that the equipment can 
be used by the operator 
successfully 

Other techniques/models that have application but are not part of 
this course include: 

Quality Function Deployment (QFD) 
System Design 
Parameter Design 
Tolerance Design 
Concurrent Engineering 

In Manufacturing: 

Statistical Process Control 
− X-bar and R charts 
− fraction defective charts 
− defects charts 

To help the production line and 
assembly lines meet the print 
specifications and operational 
requirements 

Continuous improvement process To achieve a reduction in process 
variation in all processes 

Defect prevention To prevent process errors before 
they occur 

Corrective action system To assure that permanent fixes are 
made when errors are found in the 
system 

Capability Studies To determine the capability of 
manufacturing (and other) 
processes 

Variation Reduction To reduce variation in all 
processes 

Empowerment To authorize process action teams 
to make improvements in their 
processes 

Other Quality Functions that are not part of this course: 

Incoming products and services To assure the quality of the 
incoming products/services 

Quality Manual To describe various procedures 
related to improving and 
maintaining quality in products 
and services 

Calibration System To ensure that all gages are 
accurate 
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MANAGEMENT OF THE R&M PROCESS: 

Reliability Program Plan Tasks To ensure that the activities 
required to achieve reliability 
are being done accurately and 
completely 

Data Item Descriptions To ensure that the procuring 
activities buys enough 
information so they can 
properly manage the process 

 
 

MAINTENANCE CONCEPT: 

The selection of a maintenance plan involves the selection of the 
level to which maintenance is to be performed, the location of 
the replace and repair actions, and whether the unit removed will 
be replaced discarded.  These decisions determine the MTTR (Mean 
Time to Repair and the cost of the maintenance plan. 
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Chapter 2 
 

INTRODUCTION TO PROBABILITY 
 

Table of Contents 
 

Section Title Page 

2.1 Probability based on past history 2-2 

2.2 New Systems 2-2 

2.3 Laws of Probability 2-4 

2.4 Probability Density Functions 2-4 

2.5 Choosing a Model 2-5 

2.6 Probability Calculations for Discrete 
Density Functions 

2-5 

2.7 Parameters 2-7 

2.8 Factorials 2-8 

2.9 Base e 2-8 

2.10 Summary 2-9 

2.11 Equations 2-9 

 
Symbols, Terms and Definitions: 
 
Point Estimate - estimate of a population parameter 
Prediction - forecast of what is expected 
Block Diagram - graphical illustration of a reliability model 
Binomial - discrete distribution 
Exponential - continuous distribution 
Density function - mathematical expression of a data pattern
Continuous model - category of distributions 
Parameters - population measures 
Poisson - discrete distribution 
Normal - continuous distribution 
Weibull - continuous distribution 
Factorials - a method of counting certain events 
Base e - 2.71828+ 
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In the definition for reliability it is stated that 

reliability is a probability.  Computing this probability for a 
system depends on the history that is available for the system 
and the purpose for computing the probability. 
 
2.1.  Probability based on past history
 

If the number of successes and the number of trials for a 
system are available, an estimate of the system's reliability is 
calculated as follows:   
 

Reliability
Number of successes

Number of trials
=      (2.1) 

 
Successes could be based on actual use, or based on 

controlled tests but they should not be mixed.  In either case, 
it is important that the definition of what is meant by a 
"success" is clear, and that the definition is consistently 
applied by all those involved in determining the number of 
successes.  It is also important that the definition of what is 
meant by a system is clear and is applied in a consistent manner. 
 

The "probability of success" and the "probability of no 
failures" are other terms sometimes used in place of 
"reliability."  In this text these terms will be used 
interchangeably. 
 
POINT ESTIMATE:  It is important to recognize that the result of 
equation 2.1 is an estimate of the system's true (or population) 
reliability, and as such is subject to sampling error.  The only 
way to avoid sampling error is to test the entire population of 
systems until they all fail and then compute the system 
reliability.  Since this usually is neither feasible nor 
practical, point estimates of the true reliability are commonly 
used. 
 
 This estimate is called a point estimate because it is a 
single point on the reliability scale that goes from 0 to 1.0.  
We know that it will be inaccurate but we hope it will be close 
to the true reliability.  Unfortunately, we do not know how close 
the point estimate is to the true reliability.  In the chapters 
that follow confidence intervals will be discussed, and they help 
us avoid some of the deficiencies of point estimates. 
 
2.2  New Systems
 
 A new system is one for which there is no history on the 
system as such.  This situation arises early in the life cycle of 
a new system, when it is in the design or development stage. 
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PREDICTION:  The process for estimating the reliability of a new 
system is called prediction.  In the prediction process, we start 
at a level of system for which historical data is available and 
build the system piece by piece, and level by level, using the 
laws of probability and probability density functions, until we 
reach the system level. 
 
 Hence, even for new systems historical data must be 
available before the prediction can be made.  Again, the 
historical data can be based on actual operations or controlled 
tests. 
 
Note:  The levels of a system include but are not limited to: the 
system level, the subsystem level, the assembly level, the 
subassembly level, and the parts level. 
 
LAWS OF PROBABILITY:  At each level of the system there are 
certain things that must occur for a mission to be successful.  
To compute the reliability at each level, we begin by building 
block diagrams and then apply the laws of probability to the 
block diagrams. 
 
 The block diagram is used for reliability purposes and is 
not the same as the functional design configuration.  For 
example, if you were driving a car at night, the headlights and 
the engine would be on at the same time.  For functional purposes 
they are in parallel because at night they operate at the same 
time.  But for reliability purposes they would be in series 
because both of them must operate for the car to have a 
successful mission.  Hence, the reliability block diagram would 
show these two blocks as follows: 
 
 

Engine Headlights

 

 
 
 
 
 
 
 
 Figure 2.1 Reliability Block Diagram for the 

Engine and Headlights for a Car in darkness.  
 
 
 The probability density function (p.d.f.) is used to compute 
the reliability for the elements of a system.  There are many 
different density functions, and the one that is used depends on 
the nature of the element.  For example, an element used to turn 
something on or off, such as a switch, has a failure pattern that 
is usually described by a binomial density function; an elec-
tronic component has a failure pattern that is described by an 
exponential density function. 

 
 2 - 3 



 
PREDICTION PROCESS:  To make a reliability prediction for a 
specified element of a reliability block diagram at a specified 
level, the following steps are used: 
 

1. Identify the element in the system that is under study. 
2. Select the density function that fits that element; this 

will be an equation. 
3. Identify the parameters of the equation. 

Note:  Parameters are the unknown in the equation that 
you need to know to compute probability. 

4. Collect the historical data for the element. These will 
be statistics and are used to estimate the parameters 
needed in the equation. 

5. Insert the historical data into the equation and compute 
the probability. 

 
 From the preceding discussion, it should be evident that we 
need to know several things to estimate reliability for a new 
system, including: 
 

1. How to select a probability density function. 
2. How to use a probability density function to compute the 

reliability for an element. 
3. The reliability block diagram. 
4. Laws of probability. 

 
 In the chapters that follow the laws of probability, the 
probability density functions, and reliability block diagrams are 
presented.  In a later chapter there is more discussion of the 
prediction process. 
 
 
2.3.   Laws of Probability
 
 The laws, or rules of probability that are presented in this 
text can be summarized as follows: 
 

1. Basic rule. 
2. Product rule.  
3. Addition rule. 
4. Rule of complements. 

 
2.4.  Probability Density Functions
 
 Density functions are either discrete or continuous.  
Discrete models are used with counted observations, for example, 
the number of failures, the number of defects in a system, the 
number of defectives in a sample, etc.  In each case the 
observation is a whole number, hence the term "counted 
observations."
 
 Continuous models are used with measurements.  A measurement 
always involves some type of measuring device, for example, a 

 
 2 - 4 



clock, a volt meter, a water meter, a ruler, a scale, etc.  These 
observations are not whole numbers unless the data collector 
elects to round off an observation to some whole number, like 
three pounds instead of 3.1 pounds.  The primary difference 
between a measurement and a counted observation is that a 
measurement can take on any value, but a counted observation is 
always a whole number.  Measurements, however, are limited by the 
device used to perform the measurement, and for that reason the 
exact measurement is never known. 
 
 
2.5.  Choosing a Model
 
 The choice of a model, that is choosing the most appropriate 
model (either continuous or discrete), depends on the following: 
 

1. Type of data: discrete or continuous. 
2. Historical applications:  models that have been used in 

the past for similar data.   
3. For continuous data, the pattern or shape:  A tally sheet 

or histogram of continuous data is helpful if the sample 
size is large. 

4. For discrete data the following factors are important: 
a. Lot size, finite or infinite. 
b. Whether the probability of an event is the same from 

trial to trial? 
c. Number of possible ways an event can occur. 
d. Whether the probability of the event is small? 

5. Properties of the density function can also be used to 
help select the correct model. 

 
 One of the best indicators of the correct model is past 
history.  If it is known that a certain model usually works in a 
certain situation, then it probably is the correct choice.  This 
can be verified if data is available to construct a histogram, or 
perform a goodness-of-fit test.  If past history or data is not 
available, typical applications or properties of various models 
can be examined. 
 
2.6.  Probability Calculations for Discrete Density Functions
 
 Several situations are possible in computing the probability 
for discrete functions, and they include the probability of: 
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1. An exact number of occurrences, e.g. r = 2, where "r" is the 
number of occurrences. 

 
 
 

0 1 2 3 r

P(r) P ( r = 2 )

 

 
 
 
 
 
 
 
 
 
 Figure 2.2 An Exact Number of Occurrences. 
 
 
 
2.  “r” or more occurrences; e.g. r ≥ 2, which means "r" is equal 

to or greater than 2; in other words "r" is at least 2. 
 
 
 

0 1 2 3 r

P(r) P ( r > 2 )

 
Figure 2.3 At Least Two Occurrences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
3. More than "r" occurrences; e.g. r > 2, which means "r" is 

more than 2; in other words, 3 or more, or at least 3. 
 
  

0 1 2 3 r

P(r)
P ( r > 2 )

4 5
 

Figure 2.4 More Than Two Occurrences. 
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4. "r" or less occurrences; e.g. r ≤ 2, which means "r" is 2 or 
less; in other words at most 2; or "r" is equal to or less 
than 2. 

 
 
 

0 1 2 3 r

P(r)
P ( r <  2 )

4
 

Figure 2.5 At Most Two Occurrences. 

 
 
 
 
 
 
 
 
 
 
 
 
 

5. less than "r" occurrences; e.g. r < 2, means "r" is less 
than 2; in other words at most 1; or "r" is 1 or less. 

 
 

0 1 2 3

P(r)
P ( r <  2 )

4
 

Figure 2.6 Fewer Than Two Occurrences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 There are other ways to state these situations but the 
descriptions given are commonly used.  To see what these 
situations look like, the density functions for these five cases 
are illustrated above: 
 
2.7.  Parameters
 
 Probability density functions are defined by parameters.  A 
parameter is a descriptive measure of the function.  To compute 
probability you must know what the parameter is, or have an 
estimate of the parameter. 
 
 The number of parameters varies for each density function.  
The density functions to be studied in this course have the 
following parameters: 
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Discrete Density Functions: Parameter(s): 

Binomial n (sample size) 
p (fraction defective 

Poisson m (expected number of 
occurrences of an event) 

Continuous Density Functions: Parameters 

Normal (mean) 
(standard deviation) 

Exponential (mean time between failure) 

Weibull (shape parameter) 
(scale parameter) 
(location parameter) 

 
 
From this list it is evident that some density functions have one 
parameter, some have two, and one has three parameters.  The 
important point is that you must have a value to substitute for 
the parameter in the density function.  That is the only way you 
can compute probability. 
 
2.8. Factorials
 
 Factorials are used in some density functions.  The notation 
for a factorial is the exclamation point (!) that follows a term 
in the model, e.g. “n!” 
 
 The factorial symbol simply means that you must do 
successive multiplication beginning with the number the factorial 
symbol (!) follows until you get to “1”.  For example,  
 
   n! = n x (n - 1) x (n - 2) x (n - 3) x ...... x 1       (2.2) 
 
 If n = 3, then 3! = 3 x 2 x 1 = 6                  
 
2.9. Base e
 
     In some of the density functions the base of the natural 
logarithm system, e, is used.  The value of e is 2.71828+.  In 
making calculations using "e," you may either plug in the value 
2.71828, or you use the "e" key on a calculator, if you have a 
scientific calculator.  If you do not have an "e" key, look for a 
key labeled "ln" or natural logarithm, use the inverse or second 
function key.  The inverse of "e" on the calculator is the 
natural logarithm, or "ln." 
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2.10. Summary
 
 This chapter is an introduction to the chapters where 
probability is calculated.  The basic concepts presented here 
should make the study of probability easier because you will 
already know about some probability and density functions. 
 
 This information is presented at this time so that you will 
know why we spend time going through the various methods of 
computing probability.  In a sense, the big picture has been 
presented, now our task is to look at some of the details.   
 
 Another reason for this chapter is that the density 
functions to be examined have been listed so you know what is 
coming, and you know something about a parameter. 
 
 A final point to remember is that each time we are looking 
for a probability, we are actually looking for an area under the 
density curve.  The only difference in the calculation is in the 
density function that is used.  In making the calculations we 
will use tables as much as possible to save time, and perhaps 
avoid making an error in the calculation. 
 
2.11.  Equations 
 
                   Number of successes 
    Reliability =  ------------------------------         (2.1) 
           Number of trials 
 
   n! = n x (n - 1) x (n - 2) x (n - 3) x ...... x 1       (2.2) 
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Symbols, Terms and Definitions 
 
m =  the ways an event can occur, or has already              
        occurred, 
n    =  the ways an event can fail to occur, or has already  
    done so, 
n!   =  n factorial, and it tells you to multiply all the   
    numbers from "n" down to "1," for example, 
       3! = 3 x 2 x 1 = 6 
P(A) =  Probability that event A will occur, 
P(B⎥A) = Probability that "B" will occur on the assumption  
 that "A" has already occurred, 
P(S) =  Probability of Success 
P(F) =  Probability of Failure 
N    =  population size, 
D    =  number of defectives in the population, 
x    =  number of defectives in the sample. 
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3.1.  Introduction
 
 Since one of the key words in the definition for Reliability 
is probability, it seems appropriate to begin with a discussion 
of some of the basic concepts of probability. 
 
 The probability scale goes from zero to one.  A probability 
of zero means the event cannot occur; and a probability of one 
means that the event will always occur. 
 
 Everyone uses probability every day of their lives in the 
decisions they make.  Choosing routes for getting to work, 
deciding which stores to patronize are often based on 
probability.  For example, you choose a certain route to work 
because it gives you the best chance of: getting to work on time, 
avoiding lines, avoiding heavy traffic, etc.  You do not use 
probability models to make these decisions; they are made on the 
basis of past experience that you have been able to process 
subconsciously, and you let your intuition guide your actions. 
 
 In this section the laws of probability are presented.  The 
laws, or rules as they are sometimes called, are very basic but 
have application in reliability and in quality. 
 
3.2.  Laws of Probability 
 
 The laws to be discussed are the basic law, complementation, 
the addition law, and the multiplication law. 
 
BASIC LAW:  The basic law describes the probability of a single 
event: 
 

Probability that event A will occur =  
#  of Ways event A can occur

#  of Ways event A can occur or fail to occur
        (3.1)  

 
 It is much easier to write these modes using symbols to 
represent what the words say.  For this model, the following 
symbols are used: 
 
 P(A)  =  Probability that event A will occur, 
 
 m  =  the # of ways event A can occur,  
 
 n     =  the # of ways event A can fail to occur 
 
 When these symbols are put into the basic law model, we get: 
 

( )P A   
m

m  n
                  (3.2)=

+
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EXAMPLE #1 (BASIC LAW) 
 
 A system that has been used for three years has been 
successful in eighty-four attempts, and failed sixteen times.  
What is the system reliability? 
 
 Here, m  =  84, and n  =  16 (i.e., 100 - 84) 
 
 Then Reliability  =  84/(84 + 16)  =  84/100  =  .84 or 84% 
 
 The result can be illustrated graphically on probability 
density function (p.d.f.).  For this example the p.d.f. is 
illustrated in Figure 3.1 
 
 The area of the rectangles 
in Figure 3.1 is proportional to 
the probability of the event that 
the rectangle represents.  In 
this example, the area of the 
Success rectangle is .84 of the 
total area; the area of the 
Failure rectangle is .16 of the 
total area. 

Success Failure

.16

.84

 
Figure 3.1 Probability Density 

Function. 

 
 The vertical scale of the 
probability density function is a 
probability scale, and as such it 
goes from zero to one.  Hence it 
is possible to also read the 
probability of an event from the 
vertical scale. 
 
 When working probability problems it is beneficial to always 
draw a picture of the situation.  It is also useful to shade the 
area on the p.d.f. that corresponds to the question asked. 
 
3.3.  Law of Complementary Events
 
 We have already alluded to this law.  It states that the sum 
of the probability of success and the probability of failure is 
one.  That is: 
 
                P(S)  +  P(F)  =  1.0         (3.3) 
 
 If this is true, then we could also state that: 
 
               P(S)  =  1.0  -  P(F)         (3.4) 
 
which is useful when it is easier to compute the probability of 
failure than it is to compute the probability of success. 
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3.4.  Multiplication Law
 
 The multiplication law can be used to compute the 
reliability of a series system.  It is used in reliability 
prediction when every part or assembly of the system must work 
for the system to be successful.  A reliability block diagram is 
used to show how the parts (or assemblies) go together for 
reliability purposes.  See Figure 3.2 
 

A B C nD

 
 
Figure 3.2  Block Diagram for a Series System. 

 
 When a block diagram is drawn like this, it means that every 
block in the system must work to have a success. 
 
 The multiplication law breaks down into two cases, for 
events that are independent, and for events that are conditional 
(or not independent).   
 
3.5. Independent Events
 
  An event is independent when the outcome of one event in a 
series has no affect on the probability of subsequent events.  An 
example of the independent case would be the situation where we 
have two boxes of different parts made by different vendors.  If 
one part is taken from each box, what is the probability that 
both parts are good?  This is an independent case because the 
quality of the parts in the first box has no influence on the 
parts in the second box. 
 
 
 The multiplication law for the independent case is as 
follows: 
 
 

 Probability that event A is 
successful and that event B is 
successful equals the probability 
of event A times the probability of 
event B. 

 
 
 
 When this law is expressed as an equation we end up with: 
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 P(A B) = P(A) x P(B)∩ 

 
 
 where " ∩ " means "and." 
 
EXAMPLE #2 (MULTIPLICATION LAW - INDEPENDENT EVENTS) 
 

A system has four elements in series.  If each element has a 
probability of success of .99, what is the probability that 
the system will be successful?  See Figure 3.3.  The 
probability for the system is found by computing the product 
of the four elements, that is: 

 
 
 P(A and B and C and D)  =  P(A) x P(B) x P(C) x P(D) 
 
       =  .99 x .99 x .99 x .99 
 
       =  .9606 
   

A B C D

 
 
Figure 3.3  Block Diagram for Example # 2. 

 
 
EXAMPLE #3 (MULTIPLICATION LAW FOR INDEPENDENT EVENTS) 
 

An assembly consists of three sub assemblies which are being 
selected from three separate boxes.  If the process for 
subassembly A is running at 2% defective, and the process 
for subassembly B is running at 1% defective, and the 
process for subassembly C is running at 5% defective, what 
is the probability of a good system? 

 
 We know that P(A FAILS) = 2% or .02.   
 
 Using the complementation law, the P(A GOOD) = 1.00 -.02  =.98 
 
 In the same way, P(B GOOD)  =  .99, and 
 
                       P(C GOOD)  =  .95 
 
 
 For the system, P(A and B and C)  =  P(A)  x  P(B)  x  P(C) 
 
          =  .98  x  .99  x  .95  = 
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          =  .92169  ≈ .92 
 
 
3.6.  Conditional Events 
 
 Events are conditional when the outcome of one event in a 
series has an affect on succeeding events in the series.  A good 
example is sampling without replacement from a batch of parts.  
As each part is drawn from the box, the probability of the next 
part being good (or bad) changes because the total number in the 
box is changing and the number of good parts (or bad parts) is 
also changing. 
 
 The multiplication law for the conditional case is as 
follows: 
 
 

The probability of events A and B 
equals the probability of event A 
times the probability of event B 
given that event A has already 

 
 
 
 
 

occurred.   
 
 
 
 
 When this law is expressed as an equation we end up with: 
 
 
  

P(A B) =  P(A) x P(B A)∩     
 
 
EXAMPLE # 4:  A box of 100 parts contains 93 good and 7 
defective.  If a sample of size 2 is taken from the box, what is 
the chance that they are both good? 
 
 Solution:    P(A)  =  the chance the first is good =  93/100 
                        =  .93 
 
    P(B/A)  =  the chance the second is good  
                   given that the first was good 
 
        =  92/99  =  .929 
 
 The chance that both are good is: 
 
       =  P(A)  x  P(B/A) 
 
       =  .93 x .929 =   .864 
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3.7.  Tree Diagrams
 
 An easy way to illustrate the multiplication is a tree 
diagram.  A tree diagram is made up of a series of branches.  
Each branch represents an outcome of some event.  Example 4 would 
appear as follows on a tree diagram: 
 

Sam ple #1
O utcom e:

Sam ple #  2
O utcom e:

O verall
O utcom e

G ood Part  (.929) = .86397
G ood Part  .93

B ad  Part  (.071) = .06603

G ood Part  (.939) = .06573
B ad  P art  .07

B ad  Part  (.061) = .00427

T otal = 1 .00000
 

 
3.8.  Addition Law 
 
 The addition law is used to compute the probability of a 
single event when more than one outcome is possible.  For 
example, suppose a part is being drawn from a box that contains 
many parts.  If these parts have an inside diameter, then some of 
 the parts could have an inside diameter that is under size, some 
could be over size, and some could meet the specifications.  
Hence, three outcomes are possible for the part being drawn, but 
each part can have only one outcome, i.e., either undersize, 
oversize, or meeting the specification. 
 
 Another example would be the selecting of a piece of M & M  
candy from a bag of M & Ms.  Several colors are possible, but the 
piece you choose can have only one color.   
 
 The addition law breaks down into two conditions:  events 
that are mutually exclusive, and events that are not mutually 
exclusive. 
 
 Events that cannot occur at the same time are mutually 
exclusive. In the M & M candy example, the colors of the M & Ms 
are mutually exclusive events because an M & M cannot be more 
than one color at the same time. 
 
 Events that can occur at the same time are not mutually 
exclusive.  For example, when parts from a manufacturing process 
can have more than one type of defect on the same part, the 
defects are not mutually exclusive.   
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 The mutually exclusive concept can be illustrated by 
studying a Venn Diagram. 
 

 

Intersection

 
Figure 3.4 Events That 
are Mutually Exclusive 
 

Figure 3.5  Events That Are 
Not Mutually Exclusive 

 
 
 In Figure 3.4 the circles represent events.  Since they do 
not overlap, the events are mutually exclusive.  In Figure 3.5, 
where they do overlap, the events are not mutually exclusive. 
 
 The overlap in Figure 3.5 is called the intersection.  This 
 area of the Venn Diagram represents the items in the population 
that contain both characteristics under consideration.          
 
3.9.  Mutually Exclusive Events 
 
 The equation used to compute the probability of events that 
are mutually exclusive is: 
 
 
 

P(A B) = P(A) + P(B)∪     
 
           Probability Law - Mutually Exclusive Events 
 
 EXAMPLE # 5. For safety purposes the bottling of aspirins 

must have a device that shows if someone has tampered with 
the bottle.  Over a six month period, on 3 % of the products 
shipped, the safety device was damaged, and on .1 % the 
safety device was missing.   

 
 If a bottle is selected at random from the next shipment, 

what is the probability that the safety device is either 
damaged or missing? 

 
 SOLUTION:  Since a bottle cannot have a device missing and 

be damaged at the same time the addition law for mutually 
exclusive events applies. 

 
               P(A)  =  Probability that the device is damaged, 
 
               P(A)  =  .03 
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               P(B)  =  Probability that the device is missing, 
 
               P(B)  =  .001 
 
               P(A or B)  =  P(A)  +  P(B) 
 
                          =  .03   +  .001   
 
                          =  .031 
 
3.10.  Non-Mutually Exclusive Events
 
     When events are not mutually exclusive the characteristics 
being considered can occur at the same time on the item.  For 
example, on M & M candy, the candy could have a flaw on its 
surface and the color could be the wrong shade.  Both of these 
characteristics could appear on the same piece of candy, 
therefore these defects are not mutually exclusive. 
 
 In manufacturing, parts can have more than one type of 
defect, which means the defects are not mutually exclusive. 
 
 The equation used to compute the probability of events that 
are not mutually exclusive is: 
 
 

P(A B) = P(A) + P(B) - P(A B)∪ ∩     
 
          Probability Law - Not Mutually Exclusive Events 
 
 EXAMPLE # 6:  Past history on a manufactured part shows that 

on .003 of the parts the finish is defective; and on .002 of 
the parts there is a burr that is not acceptable.  What is 
the probability that a part chosen at random has either a 
defective finish or a burr? 

 
 SOLUTION:  Since a part could have both defects the addition 

law for not mutually exclusive events is used: 
 
               P(A)  =  Probability of a defective finish, 
 
               P(A)  =  .003 
 
               P(B)  =  Probability of a burr, 
 
               P(B)  =  .002 
 
               P(A or B)  =  .003  +  .002  -  (.003 x .002) 
 
                          =  .003  +  .002  -  .000006 
 
                          =  .005  -  .000006 
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                          =  .004994 
 
3.11.  Computing Probability
 
 To compute the probability of an event it may be helpful to 
do the following: 
 
 1.  Identify all the factors related to the problem. 
 
 2.  If possible draw a picture of the situation, i.e., a 
Venn Diagram, tree diagram, or other pictorial device that may 
help you visualize the nature of the situation. 
 
 3.  If the word "and" is used the multiplication law usually 
applies; if the word "or" is used the addition law usually 
applies. 
 
                       
3.12.  Hypergeometric Model
 
 The hypergeometric model simplifies the probability 
calculation for events when the population is finite and sampling 
is without replacement.  It is used to compute the probability of 
possible sampling results.  For example, it can be used to 
compute the probability of selecting a sample of five items (made 
up of four good and one defective) from a population of forty (of 
which thirty are good and ten are defective). 
 
 This hypergeometric model involves the use of combination 
calculations where the number of combinations of "r" things from 
"n" things is written as: 
 
 
 

 Cr
n =

n!
r!(n - r)!

 
 
 

  
 
 
 where, 
 
  n!  =  n x (n - 1) x (n - 2) x ......... x 1 
 
 "n" represents the number of items that the sample is being 
taken from; and "r" is the number of items being selected. 
 
NOTE:  "n" and "r" are generic terms usually associated with 
combination models.  In the next example different terms are used 
in the model. 
 
 EXAMPLE:  From ten parts a sample of three are to be 

selected.  How many different combinations are possible? 
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 3
10C =

10!
3!(10 - 3)!

=
10!
3!7!

=
(10)(9)(8)(7!)
(3)(2)(1)(7!)

= 120  

 
 
 When the hypergeometric model is used to compute the 
probability of getting a certain sample outcome from a 
population, the model can be written as follows: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

.population the
from samples possible of 

nscombinatio ofNumber 

  

.populationin  units
defective from sample

in units defective of
nscombinatio ofNumber 

  

.population in the units
good  thefrom sample

 in the units good x"" of
nscombinatio ofNumber 

  

  (Event) P  

 
where the Event is getting "x" defectives in a sample of "n" 
units from a population, "N" that contains "D" defectives. 
 
 Suppose we let the expressions in the above model be 
represented by C1, C2 and C3.  Then,  
 

P (Event)  
C x C

C
1

 
2

3
=  

 
 The terms used in the hypergeometric are: 
 

n  =  sample size, 
 
N  =  population size, 
 
D  =  number of defectives in the population, 
 

   x  =  number of defectives in the sample.
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Using these definitions C1, C2, and C3 can be written as: 
 

C   
(N D)!

(n x)![(N D) (N X)]!

C   
D!

x!(D x)!

C   
N!

n!(N n)!

1

2

3

=
−

− − − −

=
−

=
−

 

 
 EXAMPLE:  From a box of twenty parts a sample of four is to 

be selected.  If three of the twenty are defective what is 
the probability of getting exactly three good and one 
defective in the sample of four? 

 
 SOLUTION:  We begin by defining the terms: 
 
          N  =  20;      n  =  4;       D  =  3;    x  =  1 
 

421 . 
4845
2040

4845
3 x 680defective) (1 P

4845  
16! x 1 x 2 x 3 x 4

16! x 17 x 18 x 19 x 20
4)!(20 4!

20!  C

3
2! x 1!
2! X 3

1)!(3 1!
3! C

680  
1 x 2 x 3

15  x 16  x  17
14! x 1 x 2 x 3

14! x 15 x 16 x 17      

3)!(17 3!
17!

1)]!(4  3)[(20 1)!(4
3)!(20  C

3

 2

1

===

==
−

=

==
−

=

===

−
=

−−−−
−

=

 

 
 
There is a .421 chance of getting exactly one defective in a 
sample of four from a population of twenty that has three 
defectives. 
 
DENSITY FUNCTION:  The graphical representation of the 
hypergeometric distribution is illustrated on the hypergeometric 
density function.  The density function shows probability as an 
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area on a histogram. 
 
 For the preceding example where N = 20, n = 4, and D = 3, 
the density function is as follows: 
 
 

N = 20
n =  4
D =  3

0 1 2 3 r

P(r) 

 
 
 
 
 1.0 

(defectives) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 Hypergeometric Density Function. 

 Area on the density function represents probability.  For 
this example, the area of cell "1" shows the probability of 1 
defective is .421. The probabilities of 0, 2 and 3 defectives 
are, respectively, .49128, .0842, and .00359. 
 
3.13. Conditional Probability
 
Earlier in this section we used the conditional probability 
model: 
 
 P(G1 and G2)  =  P(G1) x P(G2⏐G1) 
 
to compute probabilities when certain information was known.  One 
application of this model is sampling without replacement.  
Suppose you are taking parts from a box one-at-a-time, and not 
replacing them as they are drawn.  Each time a part is taken from 
the box the population of the box changes.  As a result, the 
probability of all the events following the first event depend on 
what has been removed from the population, i.e., it depends upon 
the condition of the population, hence the term, "conditional 
probability." 
 
The equation above is read, "the probability of getting two good 
parts in two successive draws without replacement (G1 and G2) is 
equal to the probability the first part is good (G1) times the 
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probability the second part is good (G2) given that the first 
part was good (⎜G1)."   
 
Example with a die #1:  Let us now discuss this concept in a 
slightly different way.  Suppose we have a six sided die numbered 
1, 2, 3, 4, 5, 6 and that the sides with numbers 1 and 2 are 
painted blue (B) and the others are painted green (G), i.e., 
 
 Outcome: 1 2 3 4 5 6 
 
 Color: B B G G G G 
 
You already know that the probability of rolling a "4," is 1/6 if 
all sides are equally likely.  However, if I roll the die so you 
can't see the outcome and then tell you that a green side came 
up, what probability would you assign to a "4" now?  You can 
forget about the blue sides, "1 and 2," because you know the 
outcome has to be one of the green sides, "3, or 4, or 5 or 6."  
To assign probability to a "4," divide the number of ways a "4" 
can come up by the number of green sides, and you get: 
 

 .25  
4
1  G) "4" (  P ==⎜  

 
since there is one “4” and there are four green sides.  The same 
probability could be assigned to "3, 5, and 6" since they occur 
at the same frequency as "4."   
 
Note:  The probability of .25, or 25%, represents the per cent of 
the time the result would be a "4" if this experiment (it is 
given you have a green) were conducted a large number of times. 
 
The possible outcomes for this die are as follows: 
 

1 2 3 4 5 6 

B B G G G G 

 
in which the following is happening: 
 

1. Numbers “1” and “2” are ignored because they are blue. 
2. We are only concerned with the green numbers and there 

are four of them. 
3. One of the green numbers is “4”. 
4. The probability assigned to "4"  is found by dividing the 

area corresponding to "4" by the total green area.  
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Example with die #2: Let us now suppose that the die is 
numbered and colored as follows: 

 

1 1 2 3 4 4 

B B G G G G 
 
the graph for this die is illustrated below: 
 

B   G 

B G G G 

1 2 3 4 
 
The die is rolled and you are told that a green side is showing. 
The probability you would assign to a "4" is found in the same 
way: there are two green sides marked "4," and four green sides 
possible, hence the probability assigned to "4,"  given that the 
side is green is .5, i.e., 
 

P ("4" side is green)  
2 green sides marked "4"

4 green sides in total
  .5.= =  

 
For "2⏐Green” and “3⏐Green" the probabilities would each be .25 
since there is only one green "2" and one green "3." 
 
Discrete density function example:  Now let us consider a 
probability density function in which the probabilities of the 
possible outcomes have been placed above the cells.  We have: 
 

0 1 2 3 O u t c o m e4 5

. 4 8 0
. 3 5 0

. 1 3 3
. 0 3 0

. 0 0 6
. 0 0 1

P r o b a b i l i t y
o f  a n
o u t c o m e :

 
 
Suppose that these outcomes represent the number of defectives 
that could be drawn from a population in a sample size of 100.  
If the question is asked, "What is the probability of getting 
exactly three defectives in the sample of 100," the answer is 
.03.  But if I told you that I collected the sample of 100 and 
that there are at least three defectives, what probabilities 
could be assigned to the outcomes "3, 4, and 5?" 
 

 
 3 - 15 



.027  
.037
.001 = 3)least  at  (5 P

.162  
.037
.006 = 3)least  at  (4 P

.811  
.037
.030  

.001 + .006 + .030
.030 = 3)least  at  (3 P

P(A)
B)P(A)AP(B )AP(B P(A)  B)P(A

==

∩
=⇒=∩

 

=

=

 
 
These results tell us that if this sampling were done a large 
number of times, and when it is given that you have at least 
three defectives, in the sample: 
 
 the probability of exactly 3 is: .811 
 the probability of exactly 4 is: .162 
 the probability of exactly 5 is: .027 
                                      ----- 
                                      1.000 
 
Note:  This last example is not something a reliability engineer 
would experience; it is presented here to illustrate the concept 
of conditional probability because it involves a density 
function.  However, what is likely to be of interest to the 
reliability engineer is the example that follows. 
 
The same approach is used to calculate these probabilities.  A 
portion of the density function represents what has already 
happened, and the remaining portion is used to compute the 
probability desired.  Graphically this can be illustrated as 
follows: 
 
 
 
 
 
 
 
 
 
 

 

time T 

 
The area to the left of T represents the proportion of the 
systems that have survived T hours of operation.  [Our interest 
is calculating the probability of a successful mission beginning 
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at this point in time.] 
 
Conditional probability questions are asked as follows: "Given 
that the system has survived for T hours, what is the probability 
that a mission of t hours will be successful?"  To answer this 
question, the area from T to T + t is determined; this area is 
then divided by the area from T to infinity; this gives us the 
probability of failing in the next "t" hours.  The probability of 
not failing is then subtracted from 1.0 to determine the 
reliability.  In equation form it could be written as follows: 
 
         Area under curve corresponding 
                         to the mission of t hours beginning at T 
Probability of Failure = ---------------------------------------- 
                         Area under the curve to the right of T 
 
This gives us the probability of failing during the mission, and 
the reliability is 1.00 minus that number, or, 
 
 Mission Reliability = 1.00 - Probability of Failure. 
 
Graphically it looks like this: 
 

 
 
The duration from T to T1 is the mission time; the area to the 
right of T is the total chance of failure beyond T. 
 
Computation: 
 

1. Compute the area to the right of T. 
2. Compute the area to the right of T1. 
3. The area that corresponds to failure during the mission 

is the difference between step 1 and step 2. 
4. Divide the answer in step 3 by the answer in step 1. 

(This is the probability of failure.) 
5. Subtract the answer in step 4 from 1.00 to find the 

mission reliability. 
 
3.14.  Summary
 

This section contains an introduction to basic probability 
calculations.  Six laws were presented: 
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Basic Law 
Multiplication Law for Independent Events 
Multiplication Law for Conditional Events 
Addition Law for Mutually Exclusive Events  
Addition Law for Not Mutually Exclusive Events  
Complement Law 
Conditional Probability 

 
 The laws used most often are the basic law, multiplication 
law for independent events, addition law for not mutually 
exclusive events, and the complement law.  The application in 
reliability is primarily in design, prediction, testing, and 
manufacturing. 
 
Conditional probability will be considered when the exponential, 
normal and Weibull models are presented.  At that time a graph of 
the density function is used to show how the calculation is made. 
 

 

0 T T1

 
 
 
 
 
 
 
 
 
The mission is from T to T1; the area from T to infinity 
represents the chance of failing after T hours; hence, the chance 
of failing in the increment from T1 to T1 is found by dividing the 
area between T and T1 by the area from T to infinity. 
 
The model we will use is as follows: 
 

Probability of Failing (during the interval from T to T )  
R(T) R(T )

R(T)
  1.00  

R(T )
R(T)1

1 1=
−

= −
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Mission Reliability =  1.00 -  P(failing) 
R(T )
R(T)

1=
(for a mission that
begins at T and
ends at T1)

 
 
 
3.15.  Equations Used in this Chapter
 

 P(A)
m

m n
=

+
     (3.2) 

 
 P(S)  +  P(F)  =  1.0   (3.3) 
 
 P(A and B)  =  P(A) x P(B) (for independent events) 
 
 P(A and B)  =  P(B/A) x P(A) (for conditional events) 
 
 P(A or B)   =  P(A) + P(B) (for mutually exclusive events) 
 
 P(A or B)   =  P(A) + P(B) - P(A and B) (for non-mutually  
 
 

 r
nC =

n!
r!(n - r)!

 
 
 

  
 
 

P (Event) 

Number of combinations
of "x"  good units in the 
sample from the good
units in the population.

Numberofcombinations
of defective units in
sample from defective
units in population.

Number of combinations
 of possible samples from
the population.

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

      

 

 
 
Mission Reliability = 1.00 - Probability  =  R(T1)
                             of Failing  R(T) 
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Chapter Four 
 

BINOMIAL DISTRIBUTION 
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Symbols, Terms and Definitions 
 
c  = the number of occurrences of an event (same as "x" & "r"), 
d  = the number of failures (used in the confidence table), 
ln = natural logarithm, or natural log, 
n  = number trials, (can also mean sample size), 
nCr = the number of combinations of "r" things taken from "n" 

things, 
Note:  the combination model is also written as  C r

n

p  = probability of an event on a single trial, could also be the 
fraction defective or the proportion of any characteristic 
in a population, 

$p  = point estimate 
q  = 1 - p, 
r  = the number of occurrences of an event (same as "x" & "c"), 
x  = the number of occurrences of an event (same as "r" & "c"), 
P(r < 1) = probability that r is less than 1, 
P(r ≤ 1) = probability that r is equal to or less than 1, 
P(r = 1) = probability that r equals 1, 
P(r > 1) = probability that r is greater than 1, 
P(r ≥ 1) = probability that r is equal to or greater than 1. 
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 The Binomial Distribution is another discrete distribution 
in which the observations are always whole numbers.  For 
reliability purposes the observations could be the number of 
failures in a test, the number of failures in the field, the 
number of defective parts made on a production line, and so on. 
 
4.1.  Introduction
 For the Binomial the topics to be covered in this section 
are: 
 

1. Properties of a Binomial. 
2. Parameters of the Binomial. 
3. Model used to compute the probability of an event. 
4. Binomial Density Function 
5. Cumulative probability calculations.        
6. How to use Binomial tables to compute probability. 
7. Confidence intervals for a Binomial. 
8. How to determine the number of trials for the Binomial. 

 
4.2.  Properties of a Binomial
 
 It is important to know the properties of a distribution and 
how to use them because that is how we determine the distribution 
to use to analyze data.  When we work with a Binomial 
distribution we often think of the outcomes of experiments or 
sampling opportunities as trials.  The properties of the Binomial 
are: 
 

1. The trials are independent. 
2. Only two outcomes are possible for a given trial. 
3. The probability of a success remains constant from trial 

to trial. 
4. The trials are identical. 
5. In conducting an experiment you can be interested in the 

number of successes or the number of failures; it depends 
on which is easier to calculate or find in the Binomial 
table. 

 
4.3.  Parameters of a Binomial
 
 The binomial distribution has two parameters, n and p.  They 
completely describe the distribution. 
 
RELATIONSHIP TO THE LAWS OF PROBABILITY 
 
Earlier we saw that the hypergeometric distribution can be  
used to simplify the calculation of a probability when the 
population is finite and sampling is without replacement. 
 
 The binomial can be viewed as a method of computing  
probability when the population is infinite and the probability 
of the event does not change.  This is the same as sampling with 
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replacement from a finite population, i.e., when the probability 
of an event does not change from trial to trial. 
 

EXAMPLE #1:  To illustrate, suppose you were sampling a 
population that consisted of five units of which four are 
good and one is bad.  Let us label these as G1, G2, G3, G4, 
and B1 to identify the good and bad units. 

 
If a sample of three is selected with replacement, what is 
the probability of getting exactly two good and one bad?  
Using the laws of probability the calculation would be as 
follows: 

 
 P(2 good,1 bad)  =  P(GGB or GBG or BGG) 
 
                      =  P(GGB) + P(GBG) + P(BGG) 
 
                      =  (4/5)2(1/5) + (4/5)2(1/5) + (1/5)(4/5)2

 
                      =   .128  +  .128  +  .128 
 
                      =   .384 
 

As you can see it was necessary to consider all the 
possible ways of getting exactly two good and one bad to 
compute the probability of the event.  You should also 
notice the terms for each way the event could occur have 
exactly the same factors, two "Gs" and one "B," resulting 
in 4/5 to appear twice and 1/5 once.  In the binomial model 
the same result will be achieved with a single model.  (See 
example #2.) 

 
 
4.4.  Binomial Model
 
 To compute the probability of an event that fits the 
binomial, the following model is used: 
 
 
 

P ( x ) = C p ( 1 - p )x
n x n - x

  
 
where, 
 
          n  =  number of trials 
          
          p  =  probability of the event on a single trial 
 
          x  =  the number of occurrences of the event in the 
                sampling experiment. 
 
 The first term to the right of the equal sign is the symbol 
used to compute the number of combinations of the event and n and 
x are as defined.   
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EXAMPLE # 2.  To illustrate the use of the model, consider 
the problem solved in Example #1, where n = 3, x = 1, and   
p = 1/5 = .2 

 
 

P(1)= C (.2 )(.8 )=(3)(.2)(.64)=.3841
3 1 2

 
 
 

The answer is the same as calculated in Example #1.  It 
should be because the numerical values are the same, i.e., 
4/5 or .8 appears twice, 1/5 or .2 appears once, and there 
are three ways this event can occur. 

 
EXAMPLE # 3.  Suppose a lot of 300 parts are 5 percent 
defective.  If a sample of size ten is selected, what is the 
probability that all the parts in the sample are good? 

 
In this example, n = 10, p = .05, x = 0 

 
 

P(0)= C (.05)(.95) =(.95) .598740
10 0 10 10 =  

 
 
4.5.  Binomial Density Function  
 
 A density function for the hypergeometric distribution was 
illustrated in the preceding section.  For the binomial the 
density function will look about the same. 
 
 The density function has two scales.  The horizontal scale 
represents the possible outcomes of the experiment; the vertical 
scale is a probability scale and always goes from 0 to 1.0, or   
0% to 100%. 
 
 
 The density function for the 
problem in Example #3 is 
illustrated Figure 4.1. 

0

1.0

0

P(x)

1 2 43 . X. n

n = 10
p = .05

.59874

 
Figure 4.1  Density Function 

 
 The shaded area of the density 
function depicts the probability of 
zero for the event. 
 
 It is also possible to compute 
and illustrate on a density func-
tion cumulative  probabilities.  
The cumulative probability can be 
expressed as the probability of  
"or more" or "x or less." 
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4.6.  Cumulative Probability 
 
 Computing the cumulative probabilities of an event requires 
the summation of probabilities on the left side of the density 
function or the right side of the density function.   
 
 If the need is to find the probability of "x or less" then 
the left side is cumulated.  For example, if you want to 
calculate the probability of "one or less" you need to add 
together the probability of zero to the probability of one.  In 
symbols it would look like this: 
 
          P(x ≤ 1)  =  P(0)  +  P(1) 
 
 EXAMPLE #4: Using the data in Example #3, i.e.,  
 
               n  =  10,  p  =  .05 
 
               P(0)  =  .599      To find the probability of one 
               P(1)  =  .315      or less, add these two values. 
               P(2)  =  .074 
               P(3)  =  .011 
               P(4)  <  .001 
 

For all other events for this example the probability is 
less than .001 and has not been listed. 

 
To find the probability of "x ≤ 1" we add the values .599 and 
.315 to get .914.  On the density function this can be shown by 
shading the area above x = 0 and x = 1.  See Figure 4.2. 
 
The cumulative probability can also be illustrated on a 
cumulative distribution function (CDF).  See Figure 4.3.  The CDF 
has application for other distributions also but will not be 
shown. 
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0

1.0

P(x)

0 1 2 43 . X. n

n = 10
p = .05

.599

.315

  

0

1.0

P(X <

  K) .599

.315 + .599 = .914 

0 1 2 4 3 5 X6 7 8

Figure 4.3 CDF for Binomial. Figure 4.2 Cumulative 
Probability. 

 
 
 If the probability of an event on the right side of the 
density function is desired the calculation can be made in a 
similar way.  That is, the right side can be cumulated. 
 
 In some cases it is easier to calculate the area on the left 
side and then subtract that value from one.  For example, suppose 
you want to compute the probability that "x > 2." To make this 
calculation you could add the probabilities of 3, 4, 5, 6, 7, 8, 
9, and 10 but that would require the calculation of these eight 
probabilities and then adding them.  It would be easier to make 
use of the complement law by computing the probability that  
"x ≤ 2" and subtracting the answer from 1.0. 
 
 
    P(x > 2)  =  1.0  -  P(x ≤ 2) 
 
       This equation could also have been written as: 
 
                    P(x ≥ 3)   =  1.0  -  P(x ≤ 2) 
 
 This approach works because: 
 
 P(0) + P(1) + P(2) + P(3) + P(4) + ..... + P(10)  =  1.0, 
 
 and all we are doing is moving the first three terms on the 
     left side of the equation to the right side of the equation, 
i.e.,   
 
      P(3) + P(4) + ..... + P(10)  =  1.0 - [P(0) + P(1) + P(2)] 
 
4.7.  Binomial Table   
 
 If a binomial table is available it is much easier to 
calculate binomial probabilities using the table than using the 
equation.  However, tables are limited because they will not 
contain all values of p that are possible. 
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 To use the table: 
 

1. Find the table with the correct sample size, n. 
 

2. Find the column with the correct p. 
 

3. Locate the x (or r) value in the left hand column. 
 

4. Where the x row and the p column intersect, read the 
probability. 

 
 If you are using the individual or exact table, the 
probability provided by the table is the probability of "exactly 
x" defective. 
 
 If you are using the cumulative table the probability 
provided by the table is the probability of "x or less" 
defective.  However, most binomial cumulative tables cumulate the 
left side of the density function.  Care must be taken in 
computing right side probabilities. 
 
Note:  Binomial tables for cumulative probabilities in other text 
books may be different; care must be taken when they are used. 
 

EXAMPLE # 5:  The problem in Example # 3 can be worked using 
the binomial table.  To find the probability of exactly one 
defective in a sample of ten when p is .05, look in the 
exact table for the block headed by n = 10, and the column  
p = .05, then come down the r column to r = 0 to find 
[P(0)], i.e., the probability of zero and you should read 
.599.  [Note:  In both the exact and cumulative table the 
P(0) is the same.] 

 
EXAMPLE # 6:  Let us now work the problem in Example # 4 
using the cumulative table.  To find the P(x ≤ 1) either 
table can be used.  If the exact table is used, look for the 
block  n = 10, the column p = .05 and the rows r = 0 and    
r = 1.  The probabilities for those two rows are then added 
to determine the probability of one or less, which is .914, 
(.599 + .315). 

 
If the cumulative table is used the same procedure is used 
to find the block, column and row.  In this case that is 
block 10, column .05, and row 1.  The probability in row 1 
is the cumulative probability and is the sum of the 
probabilities for zero and one.  The table should show .914; 
however, rounding errors sometimes will cause a difference 
if the calculation is done both ways.   

 
EXAMPLE # 7:  If the P(x ≥ 3) is desired, it would be easier 
to calculate the P(x ≤ 2) and subtract that value from 1.00 
because otherwise you would have to sum the probabilities of 
3 through 10.  It can be written as follows: 
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  P(x ≥ 3)  =  1.00 - P(x ≤ 2) 
 
                        =  1.00 - [P(0) + P(1) + P(2)] 
 
                        =  1.00 - (.599 + .315 + .074) 
 
                        =  1.00 - .988 
 
                        =   .012 
 
4.8.  Confidence Intervals 
 
 The calculations so far presented have assumed that the 
probability of an event, p, was known, or assumed.  For sampling 
problems and developing operating characteristic curves this is 
what must be done because we are asking, "What if..." questions. 
 
 In practical applications you are often trying to estimate 
the location of the population mean, p.  This can be done in two 
ways: 
 

1. Point Estimate.  You can estimate the mean of the 
population.  The symbol that I will use for the estimate is 
 to distinguish it from the population mean p.  This 

estimate is very simple to calculate: 
$p

 

$p  
Total number of failures

Total number of observations
=  

 
The advantage of a point estimate is that it is very easy to 
calculate;  the disadvantage is that you do not know how 
close  is to p. $p

 
2. Interval Estimate.  For this estimate a range is calculated. 

This range is called the confidence interval.  The end 
points of the confidence interval are called the confidence 
limits. 

 
When a confidence interval has been calculated a confidence 
statement can be made.  The statement is: THE TRUE 
POPULATION PARAMETER IS SOMEWHERE IN THIS INTERVAL.  The 
statement is made with a predetermined level of confidence. 
 
You can control the likelihood that your confidence 
statements will be correct by the level of confidence you 
choose. 

 
Before a confidence interval is calculated you must make 
certain decisions.  You must: 

 
a. Choose a sample size. 
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b. Choose a confidence level (per cent of the times you 

will be right), or choose a risk level, α, (per cent of 
the time you are willing to be wrong.) 

 
c. Decide if you want the confidence interval to be one-

sided or two-sided.  For a one-sided interval your 
statement will be that the parameter is at least a 
certain value, or at most a certain value.  You choose 
one of these two cases before you collect the data.  
[For reliability estimates we use the lower confidence 
limit so we can be sure of at least a certain 
reliability.] 

 
A two-sided interval provides you with both an upper and 
lower confidence limit;  you can then state that the 
parameter falls between the limits calculated. 

 
Graphically, a two-sided intervals looks like this: 

 

LCL UCL

μ

 
Figure 4.4 Illustrations of Confidence Intervals. 

 
 
In Figure 4.4, the vertical line in the center represents the 
parameter being estimated.  Note:  It would be unknown but is 
shown here to illustrate the concept. 
 
 The horizontal lines represent different samples taken to 
estimate the parameter.  They vary in location because they are 
random samples.  Most of them intersect the parameter, and they 
represent the times when the statement is correct; the lines that 
do not intersect the parameter represent the times when the 
statement is wrong.  By letting the risk of a wrong statement be 
small, most of the lines should cross the center line. 
 
 If one hundred interval estimates with ninety per cent 
confidence were made from the same population, you would expect 
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ninety of the intervals to intersect the true population 
parameter and ten would miss the parameter.  So, when a 
confidence statement is made, you are stating the per cent of the 
time such statements would be correct if many estimates were 
made.  However, when you make a statement on the basis of one 
sampling, you make the statement as if you are correct. 
 
 
4.9. Calculating the Interval
 
 The confidence interval can be calculated in several ways: 
 

A. From confidence tables for a binomial. 
 

B. From a graph of confidence belts. 
 

C. From the cumulative binomial tables. 
 

D. Using a Normal approximation. 
 

E. Using a Poisson approximation. 
 

F. Using the F distribution. 
 
 
METHOD A: Method A is by far the easiest because all one needs to 
do is to look in the confidence table for a binomial for the 
appropriate sample size, failure number, and desired confidence. 
 
 Two tables are provided in the Appendix of the Portfolio.  
One table (approximately p. 130 in Appendix of Portfolio) 
provides a one-sided lower confidence limit for reliability, and 
the second table provides two-sided limits for unreliability.  
Unreliability is the same as p for a binomial; reliability then 
is 1 - p.  In these tables the number of failures is d, and the 
sample size (number of trials) is n. 
 
 It is easy to convert from reliability to unreliability or 
vice-versa; it is done simply by subtracting either value from 
1.00.  Hence, if p = .04, then reliability is .96; if reliability 
= .994, p = .006.  We will use the letter R to signify 
reliability.  Therefore, 
 

R = 1 - p and p = 1 - R 
 

EXAMPLE # 8: To illustrate the use of Method A, suppose that 
on a test of twenty-two door openers, none of them fail.  
For 90% confidence (Appendix of Portfolio, approximately p. 
134) the reliability is .901.  This is found by looking for 
the block n = 22, the column 90% and the row d = 0.  At the 
intersection we find the lower limit for reliability:  .901. 

 
The statement can be made that the population from which the 
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sample was taken has a reliability of at least .901; this 
statement is made with 90% confidence. 

 
It could also be stated with 90 per cent confidence that the 
unreliability, or probability of failure, is no worse than 
.099, i.e., 1.000 - .901. 

 
EXAMPLE # 9:  To show how Method A is used with the two-
sided confidence table, find n = 22, for 90 % confidence and 
d = 0, and you will find two numbers, they are the upper and 
lower confidence limits.  The limits are 0 and .116 but 
these are for the probability of failure (unreliability).  
Two statements are possible: 

 
The probability of failure for the 
population the sample was drawn from 
is between 0 and .116; or,  
 
the reliability for the population 
the sample was drawn from is between 
.884 and 1.000, i.e., (1.000 - .116; 
and 1.000 - 0). 

 
 Both statements are made with 90% confidence. 
 
 Confidence limits are useful in reliability because they can 
be used to determine if a specification has been met.  For 
example, suppose that you are working with a specification that 
calls for a reliability of .90 with a confidence of 90%.  If a 
test is conducted and the lower confidence limit is .917 
reliability, which exceeds .90 reliability, then the equipment is 
considered to have met the specification; but if the lower 
confidence limit is .873, which falls below .90, the 
specification has not been met. 
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METHOD B  Method B uses a set of curves that are graphical 
representations of the cumulative binomial distribution.  To use 
the graphs you proceed as follows using the confidence belts in 
Figure 4.5.  (Dixon, W. J., and Massey, F. J., Introduction to 
Statistical Analysis, McGraw Hill Inc., N. Y., 1957, Pg. 416.) 
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 Figure 4.5 One-sided 95% Confidence Limits for 

a Proportion.  
 
 

 
1. Choose the sample size. 
2. Collect the failure data, e.g., conduct a test. 
3. Count the number of failures and divide by n to determine 

the "observed proportion," , the point estimate. $p
4. Enter the bottom scale of the graph with . $p
5. Read up to the confidence belt that equals the sample 

size used, or interpolate if the sample size used falls 
between two of the confidence belts. 

6. From the confidence belt go horizontally to the vertical 
scale on the left side of the graph and read the upper 
limit for unreliability. 

7. To find the lower limit for reliability subtract this 
number from 1.00. 
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EXAMPLE # 10:  Suppose that in a test of 50 radios 5 fail.  
To find the 95% lower confidence limit for reliability: 

 
− compute , which is 5/50 or .10, $p
− find .10 on the 95% graph,  
− go up to the confidence belt for n = 50, 
− go horizontally to the left and read about .20, 
− this is the upper limit for the probability of failure, 
− the lower limit for reliability is 1.000 - .20  or .80, 
− it can be said with 95% confidence that the reliability 

of the population the sample was drawn from is at least 
.80 or 80 %. 

 
 
METHOD C:  Method C involves solving for a set of p values (p1 
and p2) when the number of trials (n) are known, the number of 
occurrences (k) are known, and the confidence level or risk (α) 
is known. 
 
The equations are used to find p1 and p2 such that: 
 
1.  P(r ≥ (k-1)⏐n, p = p1) = 1-.5α (lower confidence limit for p) 
 
2.  P(r ≤ k⏐n, p = p2) = .5α  (upper confidence limit for p) 
 
The difficulty with this method is that you need a good set of 
binomial tables. 
 
Note: The equations apply only to the tables in the Portfolio; if 
you look in other Binomial tables the equations must be modified. 
This is because most tables give you "r or more" probabilities; 
these tables give you "r or less." 
 
 
Example:  In 25 trials 2 failures are found.  To find the 95% 
confidence limits proceed as follows: 
 
1. Find the cumulative table for n = 25 (approximately p. 108 in 

Appendix of Portfolio). 
 
2. Determine α, α = 1 - confidence, or 1 - .95 = .05; but since 

these are two-sided limits, we must look for an α/2 of .025 
and 1 - α/2 or .975 (as implied by equations 1 and 2 above). 

 
3. For the Upper Confidence Limit find .025 in the row r = 2.  

However .025 is not in the table, but you will find .00896 and 
.03211 within which .025 falls, i.e., 

 
  for p = .25, P(2) = .03211 
  for p = .30, P(2) = .00896 
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If you interpolate between p = .25 and p = .30 you find that p2 
is about .265.  So the upper confidence limit for p is .265. 
 

CUMULATIVE BINOMIAL TABLE FOR n = 25 and p = 

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.1 0.15 0.2 0.25 0.3 

r              

0 0.77782 0.60346 0.46697 0.36040 0.27739 0.21291 0.21291 0.12436 0.07179 0.01720 0.00378 0.00075 0.00013 

1 0.97424 0.91135 0.82804 0.73581 0.64238 0.55266 0.55266 0.39472 0.27121 0.09307 0.02739 0.00702 0.00157 

2 0.99805 0.98676 0.96204 0.92352 0.87289 0.81289 0.81289 0.67683 0.53709 0.25374 0.09823 0.03211 0.00896 

3 0.99989 0.99855 0.99381 0.98348 0.96591 0.94024 0.94024 0.86491 0.76359 0.47112 0.23399 0.09621 0.03324 

4 1.00000 0.99988 0.99922 0.99722 0.99284 0.98495 0.98495 0.95486 0.90201 0.68211 0.42067 0.21374 0.9047 

5 1.00000 0.99999 0.99992 0.99962 0.99879 0.99694 0.99694 0.98771 0.96660 0.83848 0.61669 0.37828 0.19349 

 
4. For the Lower Confidence Limit find .975 in the row "r - 1," 

until you find .975 (this is 1 - α/2), i.e.,  
 

for p = .01, P(1) =  .97424 
for p =  0,  P(1) = 1.00000 

 
If you interpolate between .01 and zero you find p1 is 
about .0098.  Hence the lower confidence is almost .01. 

 
5. Make a statement:  the true proportion is between .01 and .26, 

this statement is made with 95% confidence. 
 
6. Confidence limits for reliability can be found by subtracting 

the confidence limits for a proportion from 1.00.  In this 
example the reliability is between .74 and .99. 
Note:  To find the one-sided lower limit for reliability find 
p2 using α, then subtract the answer from 1.00.  In the row 
for r = k = 2, look for α = .05.  Find values .09823 and 
.03211, which bracket .05.  Thus p is bracketed by 0.2 and 
0.25, let’s say 0.24.  Then, the one-sided lower confidence 
limit for reliability is 76%. 

 
METHOD D:  The normal approximation method can be used when the 
number of trials is large and the proportion is .10 or more.  
This is to ensure that the distribution is relatively 
symmetrical. 
 
The equations used are as follows: 
 
Lower confidence limit (LCL) for p: 
 

    $ [ $( $) / ]p Z p p n− −α 1  

 
Upper confidence limit (UCL) for p: 
 

    $ [ $( $) / ]p Z p p n+ −α 1  
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where  is the proportion of failures in the number of trials, 
and Z = the standard normal deviate. 

$p

 
Example:  Suppose in 25 trials, 2 failures are observed. 
 
  = 2/25 = .08, if α = .05, then Z = 1.96, and n = 25 $p
 LCL = .08 - (1.96) [(. )(. ) / ]08 92 25  = .08 - .106 =  0 

 UCL = .08 + (1.96) [(. )(. ) / ]08 92 25  = .08 + .106 = .186 
 
As you can see we have different answers than when the Binomial 
table is used, this is because the number of trials was small and 
 was large.  Hence, $p unless you have a large number of trials, 

this method is not recommended. 
 
 
METHOD E: Poisson approximation.  The Poisson can be used to 
approximate Binomial probabilities when the number of trials is 
large (at least 10) and when  is small (less than .1). $p
 
To use this method you proceed as follows: 
 
1. To get the UCL you must find the np value from the Poisson 

table for the number of failures observed and α/2; then divide 
np by n to determine the UCL. 

 
2. To get the LCL you must find the np value from the Poisson 

table for the number of failures observed minus one and the  
(1 - α/2); then divide np by n to determine the LCL. 

 
Example:  In 25 trials 2 failures are observed.  The 95% 
confidence limits for p are: 
 
1. Enter the cumulative Poisson table for r = 2. 
2. Proceed down that column until you come to a probability of 

.025, (this is α/2). 
3. You will find .025 in the np row of 7.2. 
4. Divide 7.2 by the number of trials, 25, to get .288, which is 

the upper confidence limit for p. 
5. Enter the cumulative Poisson table for r = 2 - 1 or 1. 
6. Proceed down that column until you come to a probability of 

.975, (this is 1 - α/2). 
7. You will find .975 in the np row of .24. 
8. Divide .24 by the number of trials, 25, to get .0096, or about 

.01, which is the lower confidence limit for p. 
 
The confidence limits found by this method, .01 and .29 are 
better estimates then we found with the Normal approximation 
method.  These estimates would be even better if the n were 
larger and  were smaller; these are also much easier to use. $p
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METHOD F:  Using the F table.  This method can be found in Kapur 
and Lamberson, "Reliability in Engineering Design," pg. 379. 
They are called the Non-Bayesian and Exact Confidence Limits for 
the Binomial.   
 
The upper limit is found using the equation: 
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Example:  In 25 trials 2 failures are observed, the 95% 
confidence limits are: 
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From this example you can see that this method gives us the best 
approximation to the Binomial since .01 and .26 are what was 
obtained using the Binomial table.  However, you do need an F 
table to use this method. 
 
To show how these methods compare, a summary of the results 
obtained from five of these methods follows: 
 
 Method:   A1       C       D       E        F 
 
       LCL:  .014    .0096     0     .0096   .0098 
       UCL:  .238    .26     .186    .288    .261 
 

1: See portfolio appendix table 21, p.143 two-sided 
confidence limits for a proportion. 

 
4.10.  Developing a Sampling Plan
 
 You have already been exposed to one method for developing a 
discrete sampling plan.  The one-sided confidence limit table is 
an excellent way to determine the number of trials and acceptance 
number for testing a system that fits the binomial distribution. 
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 To determine the plan you need only to: 
 

1. Decide on the reliability value that is to be 
demonstrated.  It may come from a specification, 

 
2. Decide on a confidence level.  It may come from a 

specification. 
 

3. Select an acceptance number. Note:  An acceptance number 
of zero will minimize the number of trials but can have 
adverse affects on other risks. 

 
4. Find a number of trials in the table by searching the 

table for the acceptance number and reliability desired 
in the confidence level column that applies. 

 
 The drawback to this approach is that the tables only go up 
to n = 30 which eliminates high reliability requirements. 
 
  
Another method involves a calculation that uses an acceptance 
number of zero.  The equation is: 
 
 

n =  
ln(1 -  confidence)

 ln (Reliability)
 =  the number of trials

                   
 

 
 

EXAMPLE # 10:  A specification calls for a reliability of 
.95 to be demonstrated with 90% confidence.  How many trials 
will be required to demonstrate this specification if zero 
failures are allowed? 

 
Solution:  The confidence is 90% or .90; the reliability is 
.95; the number of failures is 0, the number of trials is: 

 

n  =  
 ln (1 -  .90) 

ln (.95)
 =  

ln .1
ln .95 

 =  
- 2.30259
 -  .05129

 =  44.9  45≈  

 
Note: If the equipment being tested has a constant failure 
rate, a sample unit can be used for more than one trial of 
the experiment. 

 
Sampling plans for acceptance numbers other than zero can be 
found in the chapter on Testing. 

 
 
 
4.11.  Summary
 
 This chapter contains information on how to deal with data 
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that fits the binomial model.  This is useful distribution 
because it has many applications in reliability and quality 
control.   
 
 In reliability, the binomial is used to compute reliability 
for systems where success is based on the number of successful 
trials;  the binomial can also be used to compute the confidence 
interval for this type of system; and the binomial can be used to 
determine the number of trials required to demonstrate a given 
reliability with a prescribed confidence level. 
 
 Trials and sample sizes have been used through out this 
chapter.  When sample size is used, it is understood that each 
sample represents a trial.  However, in reliability testing where 
the trial size is large, a sampling unit can be used for more 
than one trial if the system failure rate is constant.  This is a 
necessary condition for the binomial model, i.e., that p is 
constant from trial to trial. 
 
 The binomial has many other features that have not been 
included in this chapter but what is in here serves as an 
introduction to the binomial. 
 
4.12.  Equations
 
 

$p =
Total number of failures

Total number of observations
 

 
 

P(r) = nCr p
r (1 - p)n-r

 
P(r ≤  x) = P(0)  +  P(1)  +  P(2)  +  ......... P(x) 
 
P(r ≥ x) = P(x)  +  P(x + 1 )  +  P(x + 2) + ....... P(n) 
 
P(r < x) = P(0)  +  P(x + 1)  +  P(x + 2) + ...... P(x - 1) 
 
P(r > x) = P(x + 1)  +  P(x + 2)  +  ....... P(n) 
 
 

n =
ln (1 -  confidence)

ln (Reliability
= the number of trials (0 fail.)     

 
 
P(r ≥ (k-1)⏐n, p = p1) = 1-.5α (lower confidence limit for p) 
 
P(r ≤ k⏐n, p = p2) = .5α  (upper confidence limit for p) 
 
 
Lower confidence limit (LCL) for p: 
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$ [ $( $) / ]p - Zα p p n1−  

 
 
Upper confidence limit (UCL) for p: 
 
 

$ [ $( $) / ]p + Zα p p n1−  
 
 

UCL =
(r + 1)F

(n - r) +  (r +1)F
 

/2,2 (r + 1),2(n - r)

/2,2(r + 1),2(n - r)

α

α
 

 
 

LCL =  
r

r +  (n - r +1)F /2,2(n - r + 1),2rα
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SYMBOLS USED IN THIS SECTION: 
 

e = 2.71828+, the base of the natural log system, 
m = the expected number of occurrences of an event, 
np = the expected number of occurrences of an event when 

the Poisson is used as an approximation to the Binomial, 
P(r) = the probability that an event will occur r times 
r = the number of occurrences of an event, 
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5.1. Introduction 
 
 This distribution is named after Simeon Dennis Poisson who 
lived from 1781 to 1840.  His family tried to make him into 
everything from a surgeon to a lawyer, the last on the theory that 
he was fit for nothing better.  He decided to become a 
mathematician when he found he could solve a problem involving a 
jug of wine. [Two friends have an eight-quart jug of wine and want 
to share it evenly.  The also have two empty jars, one holds five 
quarts and the other holds three quarts.]1 (Newman) 
 
5.2 The Poisson as an Approximation to the Binomial
 
 The Poisson distribution has two applications: it can be used 
to compute answers to binomial problems if the sample size, n, is 
large and the probability of an event, p, is small; the larger n, 
and the smaller p, the better the approximation.  But what is 
large and what is small?  I have found that when n is at least 10 
and p is .1 or smaller, the approximation is useful; however, if  
n > 20 and p < .05, the approximation is better.  What it really 
depends upon is the use that is being made of the approximation. 
 
 When the Poisson is used in this way, the model is: 
 

 P(r) =  ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

!r
npe

r
np           (5.1) 

 
 Example #1.  In Example #4 in the Binomial section, a sample 
of 10 was selected from a process running .05 defective; the 
probability of no defectives was found to be .59874.  Using the 
Poisson model we get: 
 
                                  .50

               P (0) = e-(10) (.05)  ----        (5.2) 
                                   0! 
 
                     = e-.5 =  .60653 
 
which differs by .00779 from the binomial calculation.  np in this 
equation is the expected number of defectives in the sample, r is 
the number of occurrences and e is the base of the natural log 
system. 
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5.3  The Poisson as a Distribution in its Own Right
 
 A second application is as a distribution in its own right.  
In this case the model is: 
 

 
!
)()(

r
merP

r
m−=     (5.3) 

 
 where, 
 
  m = the expected number of occurrences of an event, and 
  r = the number of occurrences for which a probability 
      is desired. 
 
Here are some examples of situations that fit a Poisson process.  
(The first six were taken from Grant's, "Statistical Quality 
Control.")2

 
− excessive rainstorms 
− articles turned in to the Lost and Found 
− calls from a coin-box telephone 
− deaths from a kick of a horse 
− vacancies in the U.S. Supreme Court  
− errors in alignment found at aircraft final 

inspection 
− errors on a typed page, 
− tornadoes 
− accidents of various kinds, 
− failures of equipment during a mission, 
− expected failures during a test, 
− flat tires, 
− inventory demands, etc. 

 
 These situations fit a Poisson because there is a large 
number of possibilities for the event described to occur, but the 
probability that it occurs at a specific point in time (flat 
tire), or in a specific word (typed page), etc., is very small. 
 
 In the “articles turned in …” example, data has been 
collected on the number of lost articles turned in to Lost and 
Found in a large office building.  The distribution is as follows: 
 
# of Articles 
turned in (r):  0 1 2 3 4 5 6 7 

Number of days:  169 134 74 32 11 2 0 1 
 
 
 On 169 days no lost articles were turned in, on 134 days one 
lost article was turned in, etc. 
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 If you think about this problem you will realize that if 
there are a large number of people using this building the 
opportunity to lose something and have it turned in could be very 
large.  You should also understand that the number of people using 
the building must be the about the same from day to day. 
 
 
5.4.  Properties of a Poisson Process
 

− the distribution can be used to analyze defects (whereas 
the binomial is used for defectives), 

− the possible ways an event can occur must be large, 
− the probability of an event occurring must be small, 
− trials are independent, 
− the distribution is defined by one parameter, m, the 

expected number of occurrences of an event, 
− the sum of the probabilities for all possible events is 

1.0 
 
 
5.5  Parameters of a Poisson
 
 The Poisson has only one parameter, m, the expected number of 
occurrences of the event.  If m is known, the entire distribution 
can be described. 
 
 
5.6  Poisson Model
 
 The model which was first given in 1837 is as follows: 
 

 P(r) = e-m 
( )

!
m
r

r

        (5.4) 

 
 
 where,  m = the expected number of occurrences of an event, 
 
             e = 2.71828+ (base of the natural log system), 
 
     r = the number of occurrences of the event. 
 
 
 The probability of r occurrences, i.e., P(r), can be computed 
using a scientific calculator or table like the Cumulative Poisson 
table in the Appendix of the Portfolio. 
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5.7  Poisson Table (cumulative): 
 
 

c→ 

m↓ 

0 1 2 3 4 5 6 7  c→ 

m↓ 

15 16 

0.82 
0.84 
0.86 
0.88 
0.90 
 

0.92 
0.94 
0.96 
0.98 
1.00 
 

1.10 
1.20 
1.30 

.440 

.432 

.423 

.415 

.407 
 

.399 

.391 

.383 

.375 

.368 
 

.333 

.301 

.273 

.802 

.794 

.787 

.780 

.772 
 

.765 

.758 

.750 

.743 

.736 
 

.699 

.663 

.627 

.950 

.947 

.944 

.940 

.937 
 

.934 

.930 

.927 

.923 

.920 
 

.900 

.879 

.857 

.990 

.989 

.988 

.988 

.987 
 

.986 

.984 

.983 

.982 

.981 
 

.974 

.966 

.957 

.998 

.998 

.998 

.998 

.998 
 

.997 

.997 

.997 

.997 

.996 
 

.995 

.992 

.989 

1.000 
1.000 
1.000 
1.000 
1.000 

 
1.000 
1.000 
1.000 
.999 
.999 
 

.999 

.998 

.998 

 
 
 
 
 
 
 
 
 

1.000 
1.000 

 
1.000 
1.000 
1.000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 5.60 
5.80 
6.00 
6.20 
6.40 
 

6.60 
6.80 
7.00 
7.20 
7.40 
 

7.60 
7.80 
8.00 

1.000 
1.000 
.999 
.999 
.999 
 

.999 

.998 

.998 

.997 

.996 
 

.995 

.993 

.992 

 
 

1.000 
1.000 
1.000 

 
.999 
.999 
.999 
.999 
.998 
 

.998 

.997 

.996 
1.40 
1.50 

.247 

.223 
.592 
.558 
 

.833 

.809 
 

.946 

.934 
 

.986 

.981 
 

.997 

.996 
 

.999 

.999 
 

1.000 
1.000 

 

    

1.60 
1.70 

.202 

.183 
.525 
.493 

.783 

.757 
.921 
.907 

.976 

.970 
.994 
.992 

.999 

.998 
1.000 
1.000 8 9 10 11 

1.80 
1.90 
2.00 

.165 

.150 
1.35 

.463 

.434 

.406 

.731 

.704 

.677 

.891 

.875 

.857 

.964 

.956 

.947 

.990 

.987 

.983 

.997 

.997 

.995 

.999 

.999 

.999 

1.000 
1.000 
1.000 

   

 
 
 
 The Poisson table in the Portfolio is a cumulative Poisson; 
it cumulates the left tail of the Poisson density function from r 
= 0 to whatever you want "r" to be.  The body of the table (see 
table above) contains the cumulative probability of an event.  It 
has two scales, "m" or "np" is found on the vertical scale on the 
left side of the table, and the cumulative "r" is found on the 
horizontal scale across the top of the table.   To find the 
probability of an event, find "m" in the vertical and "r" in the 
horizontal column and read the probability where the column and 
row intersect. 
 
 
CUMULATIVE PROBABILITY:  A cumulative "r" means "r or less;" the 
probabilities in the column below that r value represent the sum 
of the probabilities for that r value and all the r values below 
it.  For example, if m = 1.5 and r ≤ 3, the table value is .934, 
and this is the sum of the probabilities for 0, 1, 2, and 3. 
 
EXACT PROBABILITIES: If the probability of exactly 3 is desired, 
i.e., P(r = 3), it is necessary to subtract the P(r ≤ 2) from the 
P(r ≤ 3) because the difference between P(r ≤ 2) and P(r ≤ 3) is 
P(r = 3) since P(r ≤ 2) includes 0, 1, and 2, and P(r ≤ 3) 
includes 0, 1, 2, and 3.  A similar calculation is made for other 
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exact probabilities. 
 
Example #2.  In the final inspection at an automobile assembly 
plant, 12 cars with leaking radiators were discovered last week. 
 

a. If no corrective action was taken, what is the probability 
that none of the cars produced this week will have leaking 
radiators? 

 
  Solution:  m = 12;     r =  0 
 
 

  P(0) = e-12 
12
0!

0

 = .000006 

 
b. What is the probability that exactly one of the cars 

produced in a day will have a leaking radiator? 
 

Solution:  Assuming that production is the same, or nearly 
the same each day, the number of leaking radiators 
expected each day is found by dividing 12 by 5 (assuming a 
five day week), or 12/5 = 2.4.  The probability of exactly 
one leaking radiator is: 

 
 

   P(1)  =  e-2.4 
( . )

!
2 4
1

1

  =  .21772 or about .22 

 
c. Suppose that when more than 3 leaking radiators are found 

corrective action must be taken.  How many days during the 
month will it be necessary to take corrective action? 

 
Solution:  From the previous problem we know that m = 2.4 
per day; and for this problem if r > 3 corrective action 
is taken.  To determine this probability it will be easier 
if the complement is computed and then subtracted from 
one, i.e.,  

 
   P(r > 3) = 1.0 - P(r ≤ 3) 
 
   P(r ≤ 3) = P(0) + P(1) + P(2) + P(3) 
 
        = .779 (from table) 
 
   P(r > 3) = 1.0 - .779 = .221 
 

Therefore, we would expect to have more than 3 leaking 
radiators on about 22% of the days of the month.  If there 
are 20 working days a month then on .22 x 20 days or about 
4.4 days of the month corrective action will be taken.  See 
the illustration: 
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0 1 2 3 5

P(r)

4 6 7

.779 .221

m = 2.41.0

8 r
0

 
 
 
THORNDIKE CURVE:  Another source for determining cumulative 
probabilities for a Poisson distribution is the Thorndike curve.  
A copy of curve can be found in the Appendix of the Portfolio. 
 
The curve is set up with "m" on the horizontal scale, and "r" as 
curved lines crossing the body of the graph.  The left vertical 
scale is P(r ≤ x).  The curve is useful because it contains the 
entire Poisson cumulative table on one page but it is not as 
accurate as the table.  To see how the curve works try solving the 
last example with the Thorndike curve.  
 
 
5.8  Poisson Density Function
 
 The Poisson probability density function shows probability as 
an area in a series of rectangles.  Each rectangle represents the 
probability of exactly one of the "r" occurrences of the event for 
a process with a mean equal to "m."   The left-hand scale is a 
probability scale. 
 
 The probability density function for the problem in Example 
#2 is shown below: 
 
 

0 1 2 3 5

P(r)

4 6 7

.22 m = 2.4
1.0

8 r
0

 
 
 
 The probability density function is constructed by drawing a 
rectangle corresponding to the probability "r," using the left 
hand scale to determine the height of the rectangle. 
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EXAMPLE #3: 
 
 A typist has been keeping track of the number of errors made 
and finds that his error rate is one error every two pages. (This 
was based on 100 pages that contained 50 errors; since 50/100 is 
.5, the error rate is .5 per page, or an average of one error on 
every 2 pages.) 
 

a. What is the probability that a 5 page letter will contain 
no errors? 
 
What is known? 
 
m = .5 per page;  
 
therefore, on 5 pages we expect .5 x 5 or 2.5 errors 
 
m (for 5 pages) = 2.5 
 
 
 

                       2.50

  P(0) = e-2.5 ------  =  .0825 
                       0! 
 
 From the table:  Using the m = 2.4 and m = 2.6, the 
probabilities are averaged for r = 0, i.e., 
 
  m = 2.4 = .091 for r = 0 
  m = 2.6 = .074 for r = 0 
    ---- 
    .165 which when divided by 2 equals .0825. 
 

b. Construct the probability density function for this 
problem. 

 
 

 
0 1 2 3 5

P(r) 

4 6 7

.0825

1.0 

r 
0

 
 
Example #4 
 
 Inventory demands for a product have averaged 4 per week 
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during the past year.  If you want to have enough units on hand at 
the start of each week to be able to cover the demands each week 
with 90% confidence, how many units should be on hand at the start 
of each week? 
 

Solution:  m =  4/week    P(r ≤ x) = .90    x = ? 
 
The question is, what should "x" be? 
 
To solve this problem find 4 in the "m" column of the table; 
go across that row until you come to a probability of at 
least .90; read the column you are in ("x").   The answer is 
7. 

 
 The student should construct the probability density function 
for this problem. 
 
 

0 1 2 3 5

P(r) 

4 6  7  8  9     

1.0 

r
0 
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5.9 Summary
 
 The Poisson distribution is a very useful distribution.  You 
will see it being used throughout the course for various 
situations.  It is probably the easiest distribution to use to 
compute probability because the table is easy to use and covers a 
good range of “m” values. 
 
 
5.10.  Equations 
 
 

   P(r) = e-np 
( )

!
np
r

r

    (5.1) 

 
 

   P(r) = e-m 
( )

!
m
r

r

    (5.3) 

 
 
  P(r > 3) = 1.0 - P (r < 3) 
  P(r < 3) = P(0) + P(1) + P(2) + P(3) 
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Chapter 6 
 

THE EXPONENTIAL DISTRIBUTION 
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Symbols, Terms and Definitions 
 
MTBF =  Mean time between failure 
R(t) =  Reliability for a mission of "t" hours 
h(t) =  hazard function (instantaneous failure rate) 
θ =  the mean time between failure (MTBF) 
λ =  the failure rate. 
α =  risk 
Σti =  sum of failure times for the units that failed 
n =  sample size 
c =  number of failures 
n-c =  number of units that did not fail 
TL  =  time when test was stopped 
t =  mission time 
T =  total test time. 
 
stop on a time =  stop a test at pre-determined time 
stop on a failure =  stop a test on a pre-determined number 
                       of failures 
with replacement =  replace or fix test units as they fail 
without replacement =  do not replace or fix test units as they  
                       fail 
confidence interval =  band that, at a given confidence level,  

contains the parameter being estimated 
confidence limits   =  end points of a confidence interval 
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6.1.  Introduction
 
 The exponential distribution is a continuous distribution 
that can be used to calculate reliability for systems that have a 
constant failure rate.  A system with a constant failure rate is 
one that has the same reliability, or probability of success, 
from mission to mission as long as the system is not in the 
wearout state.  
 
 The exponential distribution is used to compute the 
reliability for electronic equipment; in addition, complex 
systems can have constant failure rates.  The exponential model 
should not be used for prediction, or other purposes, unless it 
is known that the system has a constant failure rate.  If it is 
not known, or if there is some doubt about how the failure rate 
behaves, the failure data should be analyzed. 
 
 Failures can be analyzed in various ways: one method is to 
plot the failure rate over time to see if it is constant but this 
requires extensive testing or a large amount of field data and 
both of these may be hard to get.  The Kologorov-Smirnov (K-S) 
can also be used to test how well an exponential fits the data 
but large samples are required; this is called a goodness-of-fit 
test.  Another approach is to use Weibull Probability Paper to 
analyze failure data, but as in the case of the K-S test, a large 
sample is recommended. 
 
6.2.  Properties of the Exponential Distribution
 

a. It has only one parameter, the Mean Time Between Failure, 
(or the failure rate). 

 
b. The MTBF and failure rate are reciprocals, i.e.,    

1/MTBF =  failure rate, and 1/failure rate = MTBF. (6.1) 
 

c. The mean occurs at the 63rd percentile on the probability 
density function (p.d.f.). 

 

f ( t )

0 t
0 M T B F

. 3 7

. 6 3

 
Figure 6.1  Density Function for an 
Exponential 

 
 
 
 
 
 
 
 
 

d. The density function is defined as follows: 
 
                  f(t) = [1/MTBF] [e(-t/MTBF)]=λe-λt          (6.2) 
 

Note:  "f(t)" is the height of the density function for a 
given value of "t." 
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e. Mission time is the length of a mission and can occur at 
any point on the density function's horizontal axis. 

 
f. The area to the right of the mission time on the p.d.f. 

is the reliability for that time. 
 

M is s i o n  t i m e

R e l i a b i l i t y

f ( t )

0
0

t

 
Figure 6.2 Reliability as an Area 
Under the Density Function Curve. 

 
 
 
 
 
 
 
 
 
 
 

g. Reliability is a probability, a number between 0 and 1; a 
reliability of 0 corresponds to certain failure, and a 
reliability of 1 means that success is certain. 

 
h. The reliability function is defined as: 

 
                       R(t) = e(-t/MTBF) = e-λt                 (6.3) 
 

i. The reliability function shows the reliability for any 
mission time. 

 
 
 
 
 
 
 
 
 
 
 
 

To find the reliability from the reliability function 
enter the Mission Time scale at the appropriate point and 
proceed on a vertical line to the curve, proceed on a 
horizontal line to the R(t) scale to read the 
reliability. 

ti
0

.5

1.0

R(t)

Mission Time
 

Figure 6.3  Reliability Function for 
i

 
j. The hazard rate h(t), aka the instantaneous failure rate, 

is constant; it is defined as the density function 
divided by the reliability function.  This property is 
easy to see if the two functions are examined because 
everything cancels out except for the failure rate. 
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tt

0 

h(t) 

Mission Time 

λ=1/MTBF 

 Hazard rate function for the 
exponential case  

 
 

k. As mission time decreases for a given MTBF, or as MTBF 
increases for a given mission time, reliability 
increases. 

 
 
6.3.  Exponential Reliability Model  
 

The exponential reliability model used to compute 
reliability can be written in either of the two ways that 
follow.  They give the same answer in both cases so use 
which ever is easier for the problem you are solving. 

 

R t e t

R t e
t

( )

( )

= −

=
−

λ

θ

 

 

 
In both cases, 

 
t = mission time 
 
R(t) = the reliability for a mission of "t" hours. 
 
θ = the mean time between failure (MTBF) 
 
λ =  the failure rate. 
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Example #1:  For a mission of 3 hours what is the reliability if 
       the MTBF is 60 hours? 
 
 Solution:  t = 3 and MTBF = 60 
 
 R(3)  =  e-3/60 =  e-.05  =  .95 
 
 
 A three hour mission has a .95 or 95% chance of success; or 
95 out of 100 missions are expected to be successful, and 5 out 
of 100 or 5% of the missions are expected to fail. 
 
 If the mission time is decreased the reliability increases 
for a given MTBF.  If the mission is reduced to 2 hours,  
 
 R(2)  =  e-2/60 = e-.033  =  .967 
 
 If the MTBF increases the reliability increases, for 
example, what if the mission time is 2 hours and the MTBF is 100 
hours,  
 
 R(2)  =  e-2/100  = e-.02  =  .98 
 
 On the probability density function (p.d.f.), these three 
probabilities would show up as areas to the right of the mission 
time; as the mission time decreases or the MTBF increases the 
area under the curve to the right of the mission time increases. 
 
Approximation model:  Reliability can also be calculated using an 
approximation model that gives accurate results to at least the 
second decimal place if the exponent of the "e" in the 
reliability model is .1 or less.  The calculation is as follows: 
 
   R(t)  =  1  -  t/θ                           (6.6) 
 
 For example, R(2)  =  e-.02 = 1 - .02 or  .98 
 
 This equation can also be used to find the exponent of "e" 
if the reliability is known: 
 
             t/θ = 1 - R(t)                             (6.7) 
 
 For example, if R(4) = .94, then t/θ = 1.0 - .94 = .06, 
then the MTBF or mission time can be determined, e.g.: 
 
    if t/θ = .06, and 
 
                     t =  4, then, 
 
                     θ =  4/.06  =  66.7 hours. 
 
 This approximation works because the Reliability function 
for the exponential is close to being linear for reliability 
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values near 1.00.  The expansion of exp(-x) also illustrates why 
this works: 
 
                e-x = 1 - x1/1! + x2/2! - x3/3! + x4/4! - ...... 
 
 
6.4.  The Density Function and the Reliability Function
 
 The density function is useful for certain mathematical 
operations, but for this course it is used primarily to 
illustrate that reliability is an area under the density curve.   
 
 The reliability function is useful if the curve is drawn 
accurately on a large sheet of graph paper because it can then be 
used to estimate reliability for any mission time.  This is done 
by entering the horizontal scale at the mission time, proceeding 
on a vertical line to the curve and then moving directly to the 
left on a horizontal line to read the reliability. 
 
 Reliability, which can also be determined from the density 
function as an area, is a point on the vertical scale of the 
reliability function.  Hence, the reliability function can be 
thought of as a graph that can be used to estimate the 
reliability for an infinite number of density functions.   
 

ti

0

1.

R(t)

t

Reliability Function

R(t)

ti t

f(t)

Density Function

 
 
6.5.  The Hazard Function
 
 The Hazard function shows the instantaneous failure rate for 
a system.  For the exponential the failure rate is a horizontal 
line and is independent of time.  If the f(t) is divided by the 
R(t) the result is a constant, the failure rate (or 1/MTBF).  
This means that the failure rate is not a function of time so 
long as the equipment is not in the wearout phase or the infant 
mortality phase as depicted on a bathtub curve. 
 
6.6  Estimates of MTBF
 
 The situation commonly faced by reliability engineers is how 
to estimate the MTBF, a reliability characteristic, of the 
population being sampled.  You might want to know the MTBF so you 
could estimate how many spares are going to be needed or to see 
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if a certain requirement is being met. 
 
 Two estimates are possible, a point estimate and an interval 
estimate. 
 
POINT ESTIMATE:  The point estimate for the MTBF is found by 
dividing the hours accumulated on the system by the number of 
failures.  
 

$θ   MTBF =  
Total Test Time

Total Number of Failures
= Estimated  

 
However, when the MTBF is being estimated for test data the 
denominator of the equation can vary depending on the situation. 
For example, in testing, tests can be stopped on a failure or at 
a predetermined time.  If a test is stopped at a predetermined 
time and no failures have occurred then an MTBF cannot be 
estimated since the denominator would be zero.  To avoid this 
possibility, "1" is added to the number of failures.  This 
results in a more conservative estimate of the MTBF and as a 
result is not accepted by all users.  If such a model is to be 
used it is crucial that both parties, the buyer and the seller, 
agree to this practice before testing begins.  Research has shown 
that it would be better to add .5 or .25 but at this time "1" is 
commonly added to the number of failures. 
 
Another factor in testing is whether the test is run with 
replacement or without replacement.  When tests are run with 
replacement, units that fail are either replaced (or repaired) 
and the test continues; when the test is run without replacement, 
units are not replaced as they fail.  In both cases a total test 
time is needed but it is calculated in different ways. 
 
With Replacement - To find the total test time when testing is 
with replacement the number of units on test (n) is multiplied by 
the time when the test was stopped (TL). 
 
Without Replacement - The total test time when testing is without 
replacement is the sum of two times, the total time for those 
that failed and total time for those that did not fail.  That is, 
the total time for the units that failed (Σti) is first computed, 
then added to the total time for the units that did not fail   
((n - c) x TL)). 
 
The consequence of these conditions is that there are four 
different possibilities related to estimating the MTBF from test 
data: 
 
 Stop at a time - with replacement 
 Stop at a time - without replacement 
 Stop on a failure - with replacement 
 Stop on a failure - without replacement 
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The models that go with each of these possibilities are presented 
in the table that follows: 
 
 

ESTIMATING MTBF, $θ  

 

TEST IS TEST IS STOPPED ON A FAILURE TEST IS STOPPED ON TIME

Σt n c T
c

i L+ −( )
 

Σt n c T
c

i L+ −
+

( )
1

 
Without 

Replacement 

CASE I CASE II 

nT
c

L  
nT
c

L

+ 1
 

With 
Replacement 

CASE III CASE IV 

 
 
where, 

 
Σti = sum of failure times for the units that failed 
n  = sample size 
c  = number of failures 
n-c  = number of units that did not fail 
TL = time when test was stopped 
 

Example #2:  A test of 30 units is run for 40 hours each without 
replacement; if 2 failures are observed at 10 and 23 hours, what 
is the sample MTBF? 
 
Solution:   This is a test without replacement and stopping on a 

time; this is case II on the matrix above, therefore, 
 
  n  =  30,    Σti = 10 + 23 = 33,      c   =  2,  
 
 c+1 =  3,   n  =  30,     TL  = 40,     n - c = 30 - 2 = 28 
 
 

$ ( )
.θ         hours=

+
=

+
= =

33 28 40
3

33 1120
3

1153
3

384 3  

 
 
Example #3 A test of 10 units with replacement has been 
conducted.  The test was stopped on the 5th failure with failure 
times of: 5, 14, 27, 50, 100.   What is the sample MTBF and what 
is the reliability for a 4 hour mission for a system with an MTBF 
as determined from this test? 
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Solution:  This is a test with replacement, stopping on the 5th 
failure which is case III, therefore, 
 
 
  n  =  10, TL = 100,     c = 5,  resulting in an MTBF of: 
 
 

$ ( )
θ     = =

10 100
5

200 hours 

 
 
and the reliability for a 4 hour mission is: 
 

R(4)  =   e-4/200  =  e-.02 = 1 - .02 = .98 
 
 Point estimates are easy to calculate but do not provide a 
measure of how close they are to the true mean, i.e., the 
population mean.  A better approach would be to compute a 
confidence interval. 
 
 
CONFIDENCE INTERVALS and CONFIDENCE LIMITS:  The confidence 
interval is an estimate of the range within which the parameter 
being estimated is located; the end points of this interval are 
called confidence limits.  LCL is the lower confidence limit and 
UCL is the upper confidence limit.   
 
The advantage of a confidence interval estimate over a point 
estimate is that the confidence interval estimate provides you 
with a measure of accuracy.  Hence, you know how close the 
estimate may lie to the true parameter being estimated.  E.g., if 
the confidence limits for the MTBF are 40 and 48 hours, the 
interval width is 8 hours, which is more accurate than an 
estimate with an interval of, say, 50.   
 
CONFIDENCE STATEMENTS: Once the interval is calculated, a 
statement can be made about the MTBF, with a predetermined level 
of confidence (1 - α)%.  The statement is either right or wrong 
because the interval either includes the parameter or it does not 
include the parameter.  If calculations like this are made 
repeatedly the corresponding statements will be correct  
(1 - α)% of the time. 
 
In making statements, it is not correct to say, "there is a 95% 
probability that the MTBF is between 40 and 48."  It is more 
correct to say:  "The true MTBF is between 40 and 48; this 
statement is made with 95% confidence."  The latter statement 
implies that when such statements are made they will be correct 
95% of the time. 
 
Risk (α) - When confidence statements are made there is some 
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risk involved.  There is a risk that the confidence statement is 
incorrect, i.e., that it does not include the true parameter 
being estimated.  Risk is the complement of the confidence level, 
if the confidence level is .90 then the risk is .10 or 10 per 
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cent.  This means that 90% of the statements made are correct and 
10% are wrong.  Mathematically, 
 
  Confidence  =  1 - α                             (6.8) 
 
  1 - Confidence   =  α   =   risk                 (6.9) 
 
If you decrease the risk you increase the confidence and you 
widen the confidence interval.  The result is that you are 
allowing for more sampling error.  So it usually is not 
advantageous to make the risk too low because wider limits are 
less useful.  On the other hand, if the confidence level is 
lowered, the risk increases and the confidence limits get 
narrower, but then you may not have sufficient confidence in what 
is being estimated.  The confidence levels used most often are 
90% or 95% because they are high enough to give you a reasonable 
amount of confidence, and by controlling the number of failures 
observed, the resulting confidence interval can be made 
acceptable. 
 
ONE-SIDED or TWO-SIDED - You have the choice of computing one-
sided or two-sided limits.  Two-sided limits are used when there 
is interest in how low or how high the parameter could be.  But 
when confidence limits are used to determine if a reliability 
requirement or an MTBF has been met, the lower confidence is all 
that is needed.  If the lower confidence limit is higher than the 
requirement, the requirement has been met, otherwise, it has not 
been met.  The choice between one-sided or two-sided is usually 
related to the purpose for making the computation. 
 
CHI-SQUARE DISTRIBUTION:  If a system's failures follow the 
exponential failure model, averages of samples drawn from that 
exponential population fit a Chi-Square (χ2) Distribution. 
 
 It can be shown that: 
 

        2 x (number of failures) 
sample MTBF

population MTBF
             (6.10) 

 
has a χ2 Distribution with 2 x (number of failures) degrees of 
freedom when the test is terminated on a failure. 
 
In other words, 
 

   
2r (sample MTBF)
(population MTBF)

= =
2 2r $θ
θ

χ                      (6.11) 

 
where, 
              r = c = number of failures (Both are used) 
              θ = the population MTBF 
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But, 
(r x sample MTBF) = total test time            (6.12) 

 
since the sample MTBF is found by dividing the total test time by 
the number of failures when the test terminates on a failure. 
 
Hence, the equation (6.11) can be written as: 
 

2)(2 χθ =imeTotalTestT
               (6.13) 

 
Since the population MTBF is what we are estimating, we can re-
write this as: 
 

θ
χ

=2

)(2 imeTotalTestT
                  (6.14) 

 
or: 
 

2

2
χ

θ T
=                            (6.15) 

 
where, 

T = Total Test Time             (6.16) 
 
In place of the "=" sign the inequality sign is used, "≤ or ≥" so 
that we can speak of an interval rather than a specific point. 
 
For two-sided limits, and stopping on a failure, we end up with 
the limits: 
 

2
2

T
χ χ

≤ ≤θ
2Τ

2                         (6.17) 

 
However, the confidence level has not been attached to the    
Chi-Square values.  On a two-sided interval the confidence is 
divided equally between the two tails of the distribution.  On a 
Chi-Square distribution the confidence level can be illustrated 
in the following  way: 
 

1 − α

α / 2 α / 2

χ α1 2− / , df
2χα 2/ , df

2
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where, 
  χα 2

2
,df  = the Chi-Square value for the lower side of a 

Chi-Square distribution with a certain number of degrees of 
freedom, and 
 

The 1-α/2 part . . . .  . . .  
 
  χ α1 2

2
− ,df  = the Chi-Square value for the upper side of a 

Chi-Square distribution with a certain number of degrees of 
freedom. 
 
The χ2 value is found in the Chi-Square table using the 
subscripts attached to Chi-Square.  "1 - α" identifies the 
column you need and "df" identifies the row you need, where 
 
 df  =  2r, if the test is stopped on a failure, and  (6.18) 
 
 df  =  2r + 2 if the test is stopped on a time.      (6.19) 
            Note: 2r + 2 is derived from 2(r + 1) 
 
For a one-sided test all the risk (α) is in one tail, and for 
reliability it is the upper tail.  The Chi-Square distribution 
for this situation is as follows: 
 

1 − α

χ α1
2
− ,  d f

α

 
 
Putting this all together we end up with four models: 
 
MODEL I.  Two-sided limits stopping on a failure: 
 

2

1 2 2
2

2 2
2

T

r rχ χα α−

≤ ≤
/ , / ,

θ
2Τ

                     (6.20) 

 
MODEL II.  Two-sided limits stopping on a time: 
 

2

1 2 2 2
2

2 2
2

T

r rχ χα α− +

≤ ≤
/ , / ,

θ
2Τ

                    (6.21) 

 
Note:  Only the lower limit has a df of 2r + 2; the upper limit 
does not because 2r is more conservative than 2r + 2 at the upper 
limit, while 2r + 2 is more conservative than 2r at the lower 
limit.  Stopping on a time leads to a more conservative estimate, 
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because "1" is added to the number of failures for the lower 
limit. 
 
MODEL III.  One-sided lower limit stopping on a failure: 
 

θ ≥
−

2

1 2
2

T

rχ α ,

                         (6.22) 

 
MODEL IV.  One-sided lower limit stopping on a time: 
 

θ ≥
− +

2

1 2 2
2

T

rχ α ,

                        (6.23) 

 
Note:  One-sided upper limits are not given because there is less 
interest in the upper limits for reliability and MTBF. 
 
CHI-SQUARE TABLE:  The Chi-Square table provides Chi-Square 
values for confidence levels from .5% to 99.5%, and for degrees 
of freedom from 2 to 50.  To find the appropriate Chi-Square 
value, locate the column (confidence level) and the row (df); 
where they intersect the Chi-Square value is found.  For example 
if you wanted the 95% confidence level for 16 degrees of freedom, 
look for the 95% column and the 16th row; where they intersect 
the value is 26.3.  See table below: 
 
 

30.0 40.0 50.0 60.0 70.0 80.0 90.0 95.0 97.5 99.0 99.5
.148
.713
1.42
21.9
3.00

3.83
4.67
5.53
6.39
7.27

8.15
9.03
9.93
10.8
11.7

12.6
13.5
14.4
15.4

.275
1.02
1.87
2.75
3.66

4.57
5.49
6.42
7.36
7.27

9.24
10.2
11.1
12.1
13.0

14.0
14.9
15.9
16.9

.455
1.39
2.37
3.36
4.35

5.35
6.35
7.34
8.34
9.34

10.3
11.3
12.3
13.3
14.3

15.3
16.3
17.3
18.3

.708
1.83
2.95
4.04
5.13

6.21
7.28
8.35
9.41
10.5

11.5
12.6
13.6
14.7
15.7

16.8
17.8
18.9
19.9

1.07
2.41
3.67
4.88
6.06

7.23
8.38
9.52
10.7
11.8

12.9
14.0
15.1
16.2
17.3

18.4
19.5
20.6
21.7

1.04
3.22
4.04
5.99
7.29

8.56
9.80
11.0
12.2
13.4

14.6
15.8
17.0
18.2
19.3

20.5
21.6
22.8
23.9

2.71
4.61
6.25
7.78
9.24

10.6
12.0
13.4
14.7
16.0

17.3
18.5
19.8
21.1
22.3

23.5
24.8
26.0
27.2

3.84
5.99
7.81
9.49
11.1

12.6
14.1
15.5
16.9
18.3

19.7
21.0
22.4
23.7
25.0

26.3
27.6
28.9
30.1

5.02
7.38
9.35
11.1
12.8

14.4
16.0
17.5
19.0
20.5

21.9
23.3
24.7
26.1
27.5

28.8
30.2
31.5
32.9

6.63
9.21
11.3
13.3
15.1

16.8
18.5
20.1
21.7
23.2

24.7
26.2
27.7
29.1
30.6

32.0
33.4
34.8
36.2

7.88
19.8
12.8
14.9
16.7

18.5
20.3
22.0
23.6
25.2

26.8
28.3
29.8
31.3
32.8

34.3
35.7
37.2
38.6

1.42

 
 
 
Example #4:  What is the lower 90% confidence limit for the MTBF 
for the data in Example #2 (A test of 30 units ran for 40 hours 
without replacement; 2 failures were observed at 10 and 23 
hours)? 

 
 6 - 14 



Solution:  In this problem the total test time is 33 + 28(40) or 
1153 hours, and the test is stopped on a time, hence, 
 

T  = 1153, r = 2, and df = 2r + 2 = 2(2) + 2 = 6 
(stopped on a time), 

 
χ. ,90 6

2
  =  10.6 

 

θ  
2(1153)

10.6
     hours≥ = =

2306
10 6

217 6
.

.  

 
Statement:  The true MTBF is at least 217.6; this statement is 
made with 90% confidence. 
 
Note:  If you conducted this test many times, you would be 
correct in your statements 90% of the time and wrong 10% of the 
time. 
 
If you review the answer to Example #2 you will see that the 
point estimate for the MTBF is 384.3, which is considerably 
higher because 384.3 is an estimate of the population mean and 
therefore close to the center of the distribution.  The 
confidence for a point estimate is  between 50% and 60% for a 
Chi-Square, as illustrated below: 
 

The lower 50% confidence limit = 
2306
5 35.

 = 431.0 

 
2306
6 21.

The lower 60% confidence limit =  = 371.3 

 
6.7  Confidence Statements for Reliability
 
 To make confidence statements for reliability compute the 
R(t) but use the lower confidence limit for the MTBF in place of 
the MTBF in the denominator of the exponent, i.e., 
 
 
  R(t)  =  e-t/LCL  conf

 
 In the previous example, if a reliability confidence 
statement were to be made for a 10 hour mission, 
 
  R(10)90% conf  =  e

-10/217.6  =  e-,0460  =  .9550, i.e., we are 
90% confident that the reliability for a 10-hour mission is at 
least 95.5%. 
 

-10/384.3 = .974 = 97.4%.   whereas R(10) = e
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6.8  Summary
 
 The primary focus of this chapter was on how the exponential 
distribution is used to calculate reliability and confidence 
limits.  Also included was the calculation for the hazard 
function and point estimates. 
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Reliability Allocation 
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SYMBOLS AND MODELS USED IN THIS SECTION: 
 
n =  the number of subsystems, 
Ri =  the reliability of subsystem i, 
Rsys =  the reliability of the system. 
λi =  subsystem failure rate, 
ti =  mission time for the ith subsystem.      
ni  =  the number of modules in the ith unit, 
R(t) =  the reliability requirement for the system, 
Ii =  the importance factor for the ith unit, 
N =  the total number of modules in the system. 
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7.1.  Introduction
 
 
 Reliability allocation is the process of breaking down the 
reliability requirement for a system into reliability 
requirements for the units that make up the system. 
 
7.2.  Equal Allocation Model
 
EXAMPLE #1:  If a series system with two subsystems has a 
reliability requirement of .99, what reliability must each 
subsystem have so that their product is not less than .99?  The 
answer can be found by taking the square root of .99, which is 
.99498744 or about .995.  (As a check .995 x .995 = .990025.)  
Therefore, each subsystem needs a reliability of .995 for the 
system to have a reliability of at least .99. [Note: There are 
many other answers possible, in fact, every pair of numbers whose 
product is at least .99 is a solution.] 
 
 The reason for taking the square root to allocate the 
reliability is related to the multiplication law for probability. 
To find the probability that a series of independent units 
operate successfully, their probabilities are multiplied, for 
example, 
 

P(A and B)  = P(A) x P(B)                       (7.1) 
 
 In allocation this process is reversed; if we already know 
what is required, that is, the product of A and B, then finding 
values for A and B is accomplished by taking the square root of 
the product.  If there were three units in series the cube root 
would be taken, and for "n" units in series the nth root is 
taken.   
 
 This is called the equal allocation model, and it can be 
written as follows: 
 
 

 Ri  =  (Rsys)
1/n                                   (7.2) 

 
where, 
 
     n    =  the number of subsystems in series, 
     Ri    =  the reliability allocated to each subsystem, 
     Rsys   =  the reliability requirement for the system. 
 
  
 The equal allocation model is easy to apply and its primary 
purpose is to provide the user with a starting place.  The next 
step is to see if the allocation is attainable. 
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CHECKING ATTAINABILITY:  In the first problem presented, an 
allocation of .995 was obtained using the equal allocation model, 
that is, subsystem A is assigned a reliability of .995 and 
subsystem B is also assigned a reliability of .995.  Can 
subsystems A and B achieve a reliability of .995?  What if 
subsystem A can do no better than .992?  What reliability would 
be needed by subsystem B so that the system requirement of .99 is 
met?  We know that: 
 
            RA x RB  =  .99, and, B

 
  .992 x RB  =  .99,  therefore, B

 
                 RB  =  .99/.992  =  .99798387 or about .998. B

 
 As a check, .998 x .992  =  .990016. 
 
 Another point to consider is the cost, development time, 
criticality and other aspects of the units in the system.  When 
some subsystems are more critical, have longer development times, 
or have failure rates that are more expensive to obtain, it is 
important that such information be considered in the allocation 
process. 
 
FAILURE RATE:  When the subsystem reliability has been 
determined, a failure rate can easily be calculated for 
subsystems that fail exponentially.  The subsystem failure rate 
is found by taking the natural log of the subsystem reliability 
and dividing by the mission time, that is, 
 
     ln [R(ti)] =   (-ti)(λi) 
 
             λi =  ln(Ri)/(-ti)                          (7.3) 
 
where, 
             λi =  failure rate for ith subsystem, and 
   
             ti =  mission time for the ith subsystem. 
 
EXAMPLE 7.2: In this example where Ri = .992 for subsystem A, 
suppose that the mission time for subsystem A is 4 hours, what is 
the failure rate for subsystem A? 
 
  Subsystem A failure rate = -ln(.992)/4  = .0080+/4  = .002+ 
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7.3.  Equal Allocation Process for an Exponential System
 
 To predict the reliability for a series system the following 
model can be used: 
 
 Rsys = RA x RB x RB C x ... Rn
 
but when the subsystems are exponential and all have the same 
mission times, then the model can written as follows: 
 
     Rsys = e

-t(system fail rate) = e
-t(Sum of the subsystem failure rates)

 
which implies that, 
 system failure rate = sum of the subsystem failure rates. 
 
If we want to find the failure rate for each subsystem we would 
divide the system failure rate by the number of subsystems. 
 
EXAMPLE 7.3:  For example, suppose a system with five subsystems 
(each of which must operate for the entire mission time) has a 
reliability requirement of .96 for a 10-hour mission: 
 

R(10) = .96 = e-λt ⇒ ln (.96) = -λt = -10λ but, 
ln (.96) = -.04082 = -10(λ)  
⇒ λ =.004082 failures/hour 

 
 
 Here, .004082 is the sum of the failure rates for the five 
subsystems. 
 
 To allocate an equal failure rate to each subsystem, .004082 
failures/hour is then divided by the number of subsystems, 5. 
 
  Therefore, the allocated failure rate for each subsystem is: 
 
   Allocated subsystem failure rate = .004082 failures per hour/5 
 =  .000816 failures/hour. 
 
 The process just described can be written as a single 
equation: 
 

λ  
- ln(Rsys)

(number of subsystems)(mission time)
                                           (7.4)=  

 
Note: If the operating times for the subsystems are not the same 
as the mission time, the system reliability requirement can still 
be allocated equally to each subsystem, but the subsystem failure 
rates will not be equal. To compute: first divide by the number 
of subsystems; then divide by the operating times to yield the 
subsystem failure rates. This is illustrated in the following 
example.  
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EXAMPLE 7.4:  Suppose a system has four subsystems and a 
reliability requirement of .95 for a ten hour mission.  What 
failure rates could be allocated to the subsystems if the 
subsystem operating times are 1 hour, 2 hours, 5 hours and 10 
hours, respectively? 
 
 
 Using the equation above the natural log of .95 is -.05129+; 
hence the subsystem failure rates are: 
 
Subsys -ln(Rsys)/(#of Subsys)(ti) = λi R ei

ti i  = −λ  
A .05129/(4)(1) = .0128+ .9872+ 
B .05129/(4)(2) = .0064+ .9872+ 
C .05129/(4)(5) = .0025+ .9872+ 
D .05129/(4)(10) = .0013- .9872+ 

 
 
  As a check, system reliability = RAxRBxRB CxRD  = .95  
 
[Note: The (4) in the second column represents the number 
       of subsystems.] 
 
 The numbers in the last column are derived using the 
exponential failure model.  This column was added as a check to 
show that in this equal allocation model each subsystem has the 
same reliability and that their product, i.e., (.9872)4 is .95, 
which is the system reliability requirement. 
 
7.4.  After the Initial Allocation
 
 The initial allocation provides you with a starting place 
for the failure rates. You must now determine if those failure 
rates are feasible.  Can these failure rates actually be 
achieved?  How expensive are they?  How much time will they take 
to develop them?  To illustrate the next step let us return to 
the previous example. 
 
EXAMPLE 7.5 (Same scenario as EXAMPLE 7.4) Suppose that from past 
history it is known that the following failure rates are 
achievable for these subsystems: 
 

Subsystem λallocated λachievable Is λallocated achievable? 

A .0128 .0010 yes, λallocated > λachievable

B .0064 .0100 no, λallocated < λachievable

C .0025 .0020 yes, λallocated > λachievable

D .0013 .0010 yes, λallocated > λachievable
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 Upon inspection it is apparent that subsystem B has been 
allocated a failure rate that is not achievable.  When the 
achievable failure rate, .0100, is inserted into row B of the 
table (below) and multiplied its operating time (2 hours) a 
reliability of .98019867 is obtained for the subsystem B, and 
when the system reliability is calculated we find that it 
is.9432+ which does not meet the system requirement. 
 
Subsys -ln(Rsys)/(# of Subsys)(ti) = λi Ri= ( )ii te λ−

 
A .05129/(4)(1) = .0128 .9872+ 
B [t = 2] = .0100 .9801+ 
C .05129/(4)(5) = .0025 .9872+ 
D .05129/(4)(10) = .0013 .9872+ 
    .9432 

 
 
 Since this allocation does not meet the system requirement 
of .95 it is necessary to make up the difference by increasing 
the reliability in one or more of the other subsystems.  
 
 There are several ways of doing this.  One method is to 
temporarily remove subsystem B from the calculation and use the 
equal allocation model to allocate the remaining reliability to 
the other three subsystems. 
 
 We know: that RB = .9801+, that we need .95 for the system, 
and that R

B

A, RC, and RD must be determined.  So we can state that: 
 

.95  =   (.9801) x RA x RC x RD

 
Simplifying we get: 

 
.95

.9801
  R  x R  x RA C= D 

 
i.e., .96919306  =  RA x RC x RD = ( )( )( ) ( )DDCCAADDCCAA tttttt eeee λλλλλλ ++−−−− =  
 
 Repeating the allocation process used above, -ln (.96919306) 
= .03129 is the expected # of failures for Super Subsystem A,C,D 
for a 10-hr mission. 
 
Subsys -ln(RARCRD)/(# of subsys)(ti) = λi Ri= ( )ii te λ−

 
A .03129/(3)(1) = .0104 .9896+ 
B [t = 2] = .0100 .9801+ 
C .03129/(3)(5) = .0021 .9896+ 
D .03129/(3)(10) = .0010 .9896+ 
    .95 
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Subsystem λallocated λachievable Is λallocated achievable? 

A .0104+ .0010 yes, λallocated > λachievable

B .0100 .0100 yes, λallocated = λachievable

C .0021- .0020 yes, λallocated > λachievable

D .0010+ .0010 yes, λallocated > λachievable

 
 It should also be noted that when other factors are 
considered this may not be the optimal allocation.  Other factors 
include cost, development time, etc.  For example, subsystem A 
has an allocated failure rate of .0104+ but .0010 is achievable 
and there is a relatively large gap between these two values; 
whereas for subsystems C and D the gap is very small.  It might 
be less costly to increase the allocated failure rate for D and 
decrease the allocate failure rate for A.  For example, if the 
allocated failure rate for D is brought up to .0015 and A's 
allocated failure rate is dropped to .0040 we would still meet 
the .95 system requirement but it might be easier or less 
expensive to do so. 
 
7.5.  Weighted Model
 

Another approach for dealing with the difficulty in EXAMPLE 
7.5 is to use a weighted allocation model.  Letting subsystem B's 
failure rate be fixed at .010, and removing B from the 
calculations we get, as shown above: 
 
 RA,C,D =  .95/.98019867  =  .9691927 for the remaining 
subsystems (A, C, D). 
 
 The failure rate multiplied by mission time for the 
remaining three subsystems must sum to -1 times the natural log 
of .9691927, i.e.,  
 
 λA(1)+λC(5)+λD(10)  =  -ln .9691927  =  .03129329 
 

Based on the ratios of the achievable failure rates, let’s 
develop λA, λC, λD such that λA = λD=.5λC. 
 
 Our task is to allocate failure rates based on a weight 
factor that is derived from the achievable failure rates.  To do 
this a table is set up and the following calculations are made: 
 
1. First multiply the failure rates that are achievable for A, C, 

and D (Col. 1 on the table below) by the operating times (Col. 
2) to get Col 3. 

 
2. Col. 4 (Weight Factors):  Sum Col. 3, then divide each value 

in Col. 3 by the sum of Col. 3, to get a weight factor for 
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each row. 
3. Multiply the weight factor (Col. 4) by  (λA, C, D)(tA, C, D) that was 

computed earlier (this is the mission time x failure rate that 
must be met by these three subsystems; it is .03129 and it 
represents the allocated expected number of failures for 
super-subsystem A,C,D).  This product goes in Col. 5, it is 
the allocated failure rate x the mission time. 

 
4. Col. 6 is the allocated failure rate which is found by 

dividing Col. 5 by "t" from Col. 2. 
 
5. When compared to Col. 1 it is apparent that the allocated are 

achievable and as a check the sum of Col. 5 is .03129 which is 
what we need to achieve the system reliability. 

 
 
 
 
Sub-
system 

 
 
 

(1) 
λ
Achievable

 
 
 

(2) 
t
i

(3) 
achievable 
expected #of 
failures = 
Col (1)x(2) 

 
 
 

(4) 
Weight 

(5) 
allocated 
expected # of 
failures =  
.03129 x Col (4) 

 
 
 
(6) 

λ
allocated

A .0010 1 .001 4.76% .00149 .00149

C .0020 5 .010 47.61% .01490 .00298

D .0010 10 .010 47.61% .01490 .00149

   .021 99.98% .03129 

 
7.6.  Other Models
 
 In addition to the equal allocation model and the weighted 
model, there are several other models. 
 
 One such model is the AGREE (Advisory Group on Reliability 
of Electronic Equipment) model.  The AGREE model is based on unit 
complexity and importance.  The model assumes that units are 
independent and that they are in series for reliability purposes. 
 
 Dynamic programming can also be used to allocate 
reliability.  Information on these models can be found in the 
following sources: 
 

Reliability in Engineering Design by Kapur and Lamberson. 
Reliability Engineering (ARINC Research Corp.) edited by Von 

Alven. 
 
 For this course we will be using the equal allocation model. 
 
7.7.  Benefits of the Allocation Process
 
 When the allocation process is a contractual item it forces 
the contractor to consider the feasibility of meeting a system 
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requirement early in the development process.  If there are 
problem areas, they can be identified and action can be 
anticipated for dealing with the problems. 
 
 The allocation process can also lead to a better 
understanding of the system and its parts. 
 
 By going through the allocation process, more accurate 
failure rates can be determined for portions of the system that 
are subcontracted, and the failure rate needed can also be 
determined. 
 
 The allocation process can also lead to a more detailed 
consideration of the cost, weight, development time and other 
factors related to the acquisition of the system. 
 
 
7.8.  Summary
 
 The primary purpose of this chapter was to introduce the 
concept of allocation (or apportionment) which is not 
mathematically rigorous but needs to be done to have a starting 
place for assigning failure rates to the elements of a system.  
The only model explained in-depth was the equal allocation model 
because it is an easy model to use and should be sufficient for 
initiating trade-offs. 
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Symbols, Terms and Definitions 
 
Active Redundancy = Parallel elements that are all operating at 

the same time. 
AEG = Active Element Group 
Block Diagram = A graphical method of illustrating how the 

elements of a system relate to mission 
success. 

Parallel System = Same as Redundant system 
Partial Redundancy = A parallel system with two or more elements 

in parallel of which two or more must operate 
successfully. 

Passive Redundancy = See Standby Redundancy 
R(system) = Reliability of a system 
RADC = (The former) Rome Air Development Center 
Redundant System = A system in which there are two or more 

elements available for use where at least one 
of them must operate successfully. 

Sensing Device = A mechanical or electronic unit that 
indicates when the operating unit has failed. 

Series System = A system in which each element must be 
successful for the system to be successful. 

Standby Redundancy = System in which there are two or more 
elements available for use but only one of 
them is in operation at a time; also called 
Passive Redundancy. 

Switching Device = A mechanical or electronic unit that switches 
from one element of a redundant system to 
another element. 
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8.1.  Introduction
 
 Reliability prediction is the process of determining the 
capability of a design and its ability to meet a specified 
reliability requirement.  
 
 The prediction process begins at the lowest level of a 
system for which data is available and works up toward the system 
level.  It is a bottom-up approach.  This is the opposite way in 
which a system requirement is allocated since the allocation 
process works from the top down. 
 
8.2.  Purpose   
 

A prediction makes it possible to: 
 

− determine what trade-offs need to be made, 
− determine if the allocated failure rates meet the 

requirement, 
− identify and rank problem areas, 
− measure a contractor's progress, 
− determine feasibility, and 
− track progress during design, development, testing, and 

manufacturing. 
 
8.3.  Feasibility Prediction
 
    This is an initial estimate made of a system or a part of a 
system; it is done to get an estimate of the reliability of a 
system which can then be compared to the system requirement.  In 
the early years the feasibility prediction for electronic 
equipment was a function of the complexity of the system and the 
operational environment.  The prediction was based on historical 
data using AEGs (Active Element Groups).  For example, the MTBF 
for equipment with 1000 AEGs in an airborne environment ranged 
from about one to four hours; that same equipment in a benign 
(ground) environment had MTBFs that ranged from about twenty to 
seventy hours.  Feasibility predictions such as this gave the 
designer a estimate of what to expect and an indication of the 
amount of work to be done if the reliability specification was 
higher than predicted. 
 
8.4.  Steps in Making a Prediction  
 
1. Identify the reliability requirement. 
 
2. Define the boundaries (what’s included and what’s not included 

in the system) for the prediction. 
 
3. Develop a reliability block diagram.  The block diagram shows 

what has to work for reliability purposes.
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4. Develop the reliability models to the lowest identifiable 

function on the block diagram.  This involves identifying math 
models for each block down to the part level.  This step 
illustrates why it is necessary to study various statistical 
models since different elements of a design behave 
statistically in different ways. 

 
5. Identify the stress factors for each part application. 
 
6. Assign failure rates to each part.  Failure rates for 

electronic parts can be found in documents such as          
MIL-HDBK-217; for non-electronic parts RADC has published some 
failure data.  In either case, the data is not likely to be 
accurate but can be used for making comparisons. 

 
7. Compute the reliability for each block at the part level using 

the math model and part failure rates. 
 
8. Compute the reliability for each block of the block diagram 

using the math models developed in Step Four until the 
reliability for the system is obtained. 

 
 
8.5  Models
 
 The prediction models are based on the laws of probability 
and can be divided into series models and redundant or parallel 
models.  The series models use the multiplication laws of 
probability and the redundant can use either the addition model 
or the multiplication model. 
 
SERIES:  A series model implies that for reliability purposes 
each element in the series must operate for the mission to be 
called a success.  The functional configuration may not be in 
series.  For example, in a car, the engine, transmission and 
differential are in series functionally and for reliability 
purposes; but the engine, cooling system, and hydraulic system 
which are not functionally in series would be put in series for 
reliability purposes because each system must operate to make a 
successful trip. 
 
 If a system has four elements in series a modified "block 
diagram" could be drawn as follows: 
 

 

A B C D 

 
and the series model would be written as follows: 
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 R(system) = RA x RB x RB C x RD

 
EXAMPLE #1:  Suppose that four elements in series have the 
following reliabilities: 
 

A = .98 B = .99 C = .95 D = .99 
 
then the reliability of the system would be: 
 
R(system) = .98 x .99 x .95 x .99 = .912+ 

 
EXAMPLE 8.2  Now let us suppose that four elements in series have 
failure rates and mission times as follows: 
 

A = .001, 2 B = .0003, 4 C = .0001, 1 D = .002, 3 
 
and let us also suppose that the each element fails 
exponentially.  The reliability can be calculated as 
follows: 

 
 R(system) = e-[(.001)(2) + (.0003)(4) + (.0001)(1) + (.002)(3)]

 
       = e-[.002 + .0012 + .0001 + .006]

 
               = e-.0093 = .9907+ 
 
Note:  This examples illustrates the way in which exponents can 
be added when they all have the same base, in this case "e." 
 
This example also shows how the approximation method can be used 
to find the reliability, i.e., by subtracting the exponent from 
1.0 (i.e., 1.0 - .0093).  This method can be used if the exponent 
is .1 or less.  The difference in using the approximation method 
is small since the exact answer is .9907431. 
 
REDUNDANT MODELS:  Redundant models come in various 
configurations.  The basic difference is active vs. passive 
redundancy.  In active redundancy both elements are operating at 
all times, e.g., your eyes, ears, and nostrils are examples of 
active redundancy.  If one of the two elements is not working you 
can still see, or hear, or smell but probably not as well as you 
could with both eyes, ears, or nostrils working.  In a car head 
lights and tail lights are another example of active redundancy. 
 
 The purposes of using active redundancy is to increase the 
chance of a successful mission but it comes at the price of more 
weight, more spares required, more cost, more complexity, etc. 
 
 To compute the reliability of an active redundant system, 
two models can be used: 
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B 

R(A) = 

R(B) = .90

A 

 
 
 Model 1:   R(system) = R(A) + R(B) - R(A)R(B)       (8.1) 
 
      =  .90 + .90  - (.90)(.90) 
 
                          =    1.80     -    .81   
 
      =     .99 
 
 Model 2:  R(system)  =  1.0 - [(1.0 - R(A))(1.0 - R(B))]    
                                                           (8.2) 
 
    but R(A) = R(B), therefore, the model could be: 
 
   R(system) =  1.0 - [1.0 - R(A)]2         (8.3) 
 
                         =  1.0 - [1.0 - .90]2   
 
     =  1.0 - [.10]2

 
     =  1.0 - .01 
 
     =   .99 
 
 
Note:  If equation (8.2) is simplified algebraically the result 
is equation (8.1), for example: 
 
 R(system) =   1.0 - [(1.0 - R(A))(1.0 - R(B))]  
 
   =   1.0 - [1.0 - R(B) - R(A) + R(A)R(B)] 
 
   =   1.0 -  1.0 + R(B) + R(A) - R(A)R(B) 
 
               =   R(A) + R(B) - R(A)R(B) 
 
hence either model can be used.  Equation (8.3) is usually easier 
to use because additional elements can be made redundant merely 
by changing the exponent. 
 
PARTIAL REDUNDANCY:  Partial redundant systems are those in which 
of "n" elements in parallel some number "k" of those elements 
must work for mission success.  Laws of probability can be used 
to solve this problem but the Binomial model is much easier to 
use. 
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EXAMPLE 8.3  Suppose that of four elements in parallel at least 
two have to work for mission success.  If each element has a  
reliability of .90, what is the probability that at least two 
will succeed? 
 

To solve this problem, the probability of two (k) or more 
successes is calculated using the Binomial with: 
 
 R = .9 and 1 - R = .1,    n = 4    and   k = 2 
 
 P(k ≥ 2) =  P(2) + P(3)  +  P(4) 
 
 P(2) =  4C2 (.9

2 )(.12) = 6(.81)(.01)  =    .0486 
 
 P(3) =  4C3 (.9

3 )(.11) = 4(.729)(.1)  =    .2916 
 
 P(4) =  4C4 (.9

4 )(.10) = 1(.6561)(1)  =    .6561 
                                               ------- 
                                                .9963 
 
MIXED MODELS:  Mixed models are used when the block diagram has 
series and redundant blocks mixed together.  A simple mixed model 
could look like this: 
 
 

 

A 

B 
C

 
 
where C is in series with the redundant block AB. 
 
Solving such a problem involves combining the series and 
redundant models using the laws of probability. 
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STANDBY REDUNDANCY:  In a standby redundant model there are two 
elements in parallel but only one of them is in operation; if it 
should fail then the redundant element is put into operation.  
Two additional devices are required for standby systems, a 
sensing device to indicate when the operating unit has failed, 
and a switching device to switch the standby element into 
operation.  We will assume the sensing device is perfectly 
reliable. 
 

Case I: For two identical elements in a standby 
configuration with a perfect switch the reliability model 
for exponential failures is: 
 
R(system) = e(-t/MTBF)(1 + t/MTBF)     (8.4) because : 
 

R(system)= P(0 or 1) = P(0) + P(1) = )1(
!1

e
!0

1-m0

memme m
m

+=+ −
−

 

But 
MTBF

ttm == λ  

So, R(system)= )1(/

MTBF
te MTBFt +−  QED 

 
 
Case II: If the switch is not perfect, the model is: 
 
R(system)= e(-t/MTBF){1+ R(switch)(t/MTBF)}   (8.5) because: 
 
R(system)= P{0 element failures or [1 element failure and 0 
switch failures]} 
= P(0 element failures) + P(1 element failure and 0 switch 
failures) 
= P(0 element failures) + P(1 element failure)P(0 switch 
failure|1 element failure) 

)1()1()( /

MTBF
tR

emReRmee switchMTBFt
switch

m
switch

mm +=+=+= −−−−  QED 

 
where Rswitch is independent of time and refers to a single 
switching operation when the first unit fails. 
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8.6  Summary
 
    There are many topics that could be covered in a Reliability 
Course including, Open and Short Circuit Failures, Redundancy in 
Time Dependent Situations, Active Parallel Redundancy, 
Maintenance Considerations, Standby Redundancy with Unlike 
Elements, etc.  A good reference for this material is: 
 
Reliability Engineering, ARINC Research Corporation, Prentice 
Hall, Inc. 1964 
Reliability: Theory and Practice, Bazovsky, Prentice Hall 1961 
 
Another reference is MIL STD 756 which contains several models 
with equations for each model. 
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9.1. Introduction  
 
     The Weibull distribution was developed by W. Weibull, a 
Swedish mathematician in 1952.  It was developed to analyze non-
electronic systems. 
 
 The Weibull can be used to describe all three portions of 
the reliability bathtub curve because it has a shape parameter 
for each portion of the bathtub curve. 
 
     In the general case, the Weibull Distribution is a three-
parameter distribution. The parameters are known as the shape 
parameter, the scale parameter, and the location parameter. 
 
 Beta ( β ) is the shape parameter.  A Beta of 1.0 has an 
exponential shape and a constant failure rate; if Beta is greater 
than 1.0, the failure rate increases over time; and if Beta is 
less than 1.0 the failure rate decreases over time. 
 
 Eta ( η ) is the scale parameter, sometimes called the 
characteristic life, and is measured in units of time, typically 
hours.  Eta is the time on the horizontal axis of the Weibull 
density function curve that divides the area under the curve into 
two parts, to the left of Eta the area is always .63; and to the 
right of Eta the area is always .37.  In other words, 37% of the 
units will fail at an age less than Eta; and the remaining 63% of 
the units will fail at an age greater than Eta.  Note that when 
Beta is exactly 1.0, the Weibull distribution becomes the 
exponential distribution; and the Weibull’s “eta” is the same as 
the exponential’s “theta” or mean-time-between failures. 

 Gamma ( γ ), or t0, is the location parameter, and is 
measured in units of time, typically hours.  When t0 is zero, the 
Weibull distribution becomes a two-parameter Weibull and is very 
useful for many applications.  When t0 is greater than zero, t0 is 
like a guarantee period because the probability of failure is 
zero.  Hence, t0 represents the length of time before a failure 
occurs for a specific failure mode.  Equipments can have a 
different reliability for different failure modes, for example, 
bearing failures vs. cracks on a bearing housing. 
 
 
9.2. Application to the Reliability Bathtub Curve
 
 The Weibull is also useful for analyzing failure data 
because if sufficient data is available the Weibull can often be 
used to determine which distribution best fits the data.  β < 1 
implies “infant mortality” i.e., latent defects. 
 
 If the analysis indicates that Beta is 1.0 then the data is 
most likely exponential and exponential models can be used for 
further analysis.  β = 1 implies “Useful Life.” 
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 If the analysis indicates that Beta is about 2.1, the log-
normal distribution may be appropriate. If Beta is about 3.44 
then the data could be normally distributed and the normal 
distribution could be used for further analysis. β > 1 implies 
“Wear-out.” 
 
 
9.3. Weibull Distribution Models
 
Weibull Density functions: 
 

Two-parameter Weibull: f(t) = (β/η)(t/η)β-1exp[-(t/η)β] (9.1) 
 

Three-parameter: f(t)=(β/η){t-t0)/η}β-1exp[-((t-t0)/η)β] (9.2) 
 
Weibull Reliability functions for a mission of t hours assuming 
the system has not been used before: 
 
 Two-parameter Weibull: R(t) = exp(-(t/η)β) (9.3) 
 
 Three-parameter Weibull: R(t) = exp(-((t- t0 )/η)β) (9.4) 
 
Weibull Hazard functions:  
 
 Two-parameter Weibull: h(t) = (β/η)(t/η)β-1 (9.5) 
 
 Three-parameter Weibull: h(t) = (β/η)[t-t0]/η)β-1 (9.6) 
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9.4. Illustrations of Weibull Functions: 

 
 
9.5. Graphical Method for Estimating Weibull Parameters When the 
Plotted Points are Co-linear. 
 
 A graphical approach will be used to estimate Beta, Eta, and 
t0.  There are iterative methods available but they will not be 
presented in this course. 
 
 To illustrate how Eta, Beta and t0 are estimated an example 
will be used. 
 
 Five failures occurred in a life test of five bearings at 
the following times (in hours): 
 
 1150, 2100, 700, 1600, and 2650. 
 
 Steps to estimate Beta, Eta, t0 and the R(800): 
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  j Failure time
Step 1. List the failure times in 

numerical order and assign a 
failure number (j) to each 
failure time beginning with 
j = 1 for the first failure, 
j = 2 for the second, etc. 
up to the sample size, n. 

1 
2 
3 
4 
5 

700 
1150 
1600 
2100 
2650 

 

  j Failure time Med. Rank

Step 2. Assign a Median Rank either 
from the Median Rank table 
in Portfolio or using the 
equation 
 
             j - .3 
Med. Rank = --------- 
             n + .4 
 

1 
2 
3 
4 
5 

700 
1150 
1600 
2100 
2650 

12.945
31.381
50.000
68.619
87.055

 
 

Note:  Median Ranks are always based on the sample size, not 
the number of failures. 

 
Step 3.  On a Weibull Probability Chart, aka Weibull graph paper, 

change the horizontal scale to accommodate the failure 
time values, starting with the smallest failure time.  
In this example, the first "1" on the graph becomes 
"100."  Note: The "1s" on the graph paper are always 
powers of "10." 
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Step 4.  Plot the failure times (horizontal axis) vs. the Median 
Ranks (vertical axis).  See the graph below: 
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Step 5.  Examine the plotted points.  If they have a straight-
line trend, draw the line of best fit through the points. If a 
straight line can be drawn, then t0 is zero, as shown below. If 
not, see the example in Section 9.6. 
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Step 6.  Drop a perpendicular from the “β Estimation Point” 
(labeled the “Estimation Point” in the upper left hand corner of 
the chart below) to the line of best fit. 
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Step 7. Beta and Eta:  To estimate Beta, locate the point where 
the perpendicular line crosses the Beta scale on the graph below. 
To estimate Eta, enter the Median Rank scale (vertical axis) at 
the 63rd percentile (dotted horizontal line). Follow the dotted 
line until it intersects the line of best fit.  Then drop 
straight down to the time scale (see the chart below) to read 
Eta. 
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Step 8. R(t):  Enter the time scale at "t," and proceed straight 
up to the line of best fit.  Go straight across to the Med. Rank 
scale to read the chance of failure.  Subtract this number from 
1.0 to find the R(t). 
 
 
9.6 Graphical Method for Estimating Weibull Parameters When the 
Plotted Points are not Co-linear (Plot is concave downward)
 
 When t0 is not equal to zero and the trend of the plotted 
points is convex (increasing at a decreasing rate), it may be 
possible to straighten the line.  This is done by subtracting a 
constant (the same constant) from each data point. See Pg. 9-10. 
 
 The constant must be a number between zero and the smallest 
failure time.  The procedure is as follows: 
 
Step 1. Begin by subtracting half the smallest failure time from 
each failure time. 
 
Step 2. Re-plot the data. 
 
Step 3. Check for a straight-line trend.  If the trend is now 
straight, the amount subtracted is t0. 
 
Step 4.  

A.  If the trend is still convex, subtract a larger number, 
re-plot and re-check the trend to see if it is now straight.  
If not, continue subtracting and plotting until the plotted 
points have a straight-line trend.  Remember, you cannot 
subtract a number larger than the smallest failure time. 

 
B. If at any time during this process the trend curves in the 
opposite direction (concave), the amount subtracted is too 
large; try a smaller value, re-plot and re-check. 

 

 9 - 11 



Step 5. Continue making adjustments until a straight-line trend 
results, as shown in the graph below.  Note: to determine the 
R(t), enter the time scale at (t–t0). If it is impossible to get 
a straight line, then the data may not be well-modeled by a 
Weibull. 
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9.7. Other Applications (When the Plot is Concave Upward)
 
 If the original trend is concave (increasing at an 
increasing rate), it is possible that more than one Weibull can 
be fitted to the data.  See graph below: 
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 In this example, the intersection point of the two straight 
lines could represent the age at which the failure rate changed 
from decreasing to a constant, or from a constant to increasing, 
depending on the values of Beta.  It is also possible that two 
failure modes with different Beta values have been plotted.  To 
check this possibility, identify the failure modes for the data; 
if they are different, plot them separately. Then analyze the 
revised plots. 
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9.8. Confidence Intervals
 
 It is possible to make confidence statements for the Weibull 
from the graph.  To do this: 
 
1. Find the 5% and 95% tables and read the ranks for those tables 

for each failure time. 
 
2. Plot the time vs. ranks. 
3. Connect the plotted points. 
 
4. The result is an upper and lower confidence band for the data 

(See the graph that follows). 
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9.9. Reliability of a Used System: Conditional Probability
 
 If the system has been used before, the conditional 
probability model should be applied to compute reliability for a 
mission of t hours.  The equation to be used is as follows: 
 

(9.7)                                                            
P(A)

B) andP(A     A)P(B i.e.,    
R(T)

)R(T  R(t) 1
==  

 
Where, 
 
 T is the time when the mission starts,  
 
 T1 is the time when the mission is completed, and 
 
 T1 – T = t = the mission duration. 
 
 To calculate mission reliability the Weibull model is used 
to compute R(T1) and R(T). 
 
For example, the reliability for a ten-hour mission on a system 
that already has 100 hours of use is desired.  This means that 
the mission starts at the 100th hour and ends at the 110th hour.  
 
 The system is Weibull distributed with: 
 
  Beta = 1.5,  
  Eta = 300 and  
  t0 = 0 
 
 Therefore, 
 
  With T = 100 and T1 = 110 hours 
 

[ ]
100)-R(0
110)-R(0 = ) 1000  ]110100[ ( −−R  

 
Where R(0-110) is the probability a new unit will survive 110 
hours; and R(0-100) is the probability a new unit will survive 
100 hours. 
 

[ ] 97.
825.
801.

)300/100exp(
)300/110exp() 1000  ]110100[ ( 5.1

5.1

==
−
−

=−−R  
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100 110 300

f(t)

 
 
 
9.10.  Hazard Rate
 
As stated earlier, if Beta is less than one the hazard rate 
decreases, if Beta is larger than one the hazard rate increases. 
 
If a system’s failures are Weibull-distributed with: 
 
  Beta = 1.5,  
  Eta = 300 and  
  t0 = 0 
 
 We can compute the hazard rate at 10 and 100 hours as 
follows: 
 
 
 h(10)  =  (1.5)/(300) x (10/300)(1.5 - 1)   
 
            = (.005) x (.183) = .0009+ 
 
 h(100) =  (1.5)/(300) x (100/300)(1.5 - 1)   
 
            = (.005) x (.577) = .0029+ 
 

.0029 

.0009 

10 100      hours 

h(t) 

 
 
As you can see the failure rate is about three times higher at 
100 hours than it was at 10 hours. 
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9.11 Summary
 
 The Weibull is a versatile distribution and can be useful to 
anyone involved in analyzing test or field data.  It is important 
that the database be large enough so that an accurate analysis is 
possible. 
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NOTE:  This ARTICLE APPEARED IN “Introduction To Weibull 
Analysis” by the Statistical Engineering Group at Pratt & Whitney 
Aircraft.  Revised March 15, 1975. 
 
 

APPENDIX F 
 

ANALYSIS OF TWO FAILURE DISTRIBUTIONS 
 
 

Plotting failure data which contain two or more different modes 

of failures (e.g., ball failures or inner bearing race failures) 

will normally not result in a straight or smooth curved (to≠0) 

Weibull line.  From Figure 16 in the text, we saw that the data 

described neither a straight or smooth curved line.  Yet with a 

special analysis, we were able to separate the failure 

distributions.  Consider the following data from a bearing life 

study program as a practical example of (1) data we might expect 

some day and (2) a method of analyzing this data. 

 

Order Number Hours-to-Failure Failure Mode 

1 7.8 Ball 

2 20 Inner Race 

3 22 Ball 

4 50 Ball 

5 90 Inner Race 

6 102 Ball 

7 120 Inner Race 

8 140 Ball 

9 224 Ball 

10 300 Inner Race 
 
A Weibull plot of these ten data points is shown in Figure F-1. 
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Obviously, the data do not describe a straight line on Weibull 

probability paper.  A special analysis is necessary to separate 

the two failure modes.  The correct way of handling these data is 

to: 

1.  Identify the failure mode for each bearing, by technical 

inspection. 

2.  Separate the data by failure modes (ball or inner race) 

3.  Replot the data 

When replotting the data for the ball failures, the inner race 

failures are considered suspension. On the other hand, the ball 

failures are considered suspensions when plotting inner race 

failures.  (See Appendix D, “Analysis of Test Data which Include 

Suspended Data”). 

 

Ball Failures

Order Number Hours-to-Failure Rank Order Number New Median Rank

1 7.8 1 6.697 

2 22 2.111 17.295 

3 50 3.222 28.000 

4 102 4.518 40.513 

5 140 6.139 56.174 

6 224 7.760 71.826 

 

 

Six failures were due to the ball failing.  The other failures 

were considered suspension.  The failures were ranked in 

ascending order and a new rank order number and median rank were 

calculated for each failure.  Figure F-2 describes the 

distribution of ball failures. 
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Inner Race Failures

Order Number Hours-to-Failure Rank Order Number New Median Rank

1 20 1.100 7.650 

2 90 2.514 30.773 

3 120 4.211 37.548 

4 300 7.605 70.329 
 
The remaining failures were attributed to the inner race failing. 
The ball failures were considered suspensions.  Again, new rank 
order numbers and median ranks were calculated and the data were 
replotted in Figure F-3 
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Reliability Growth; Test, Analyze and Fix 
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10.1. Background
 
 The new graduate engineer in the office has been given his first assignment - to design a 
new, "more reliable" mousetrap - in four weeks!  Enthusiastic, he spends week one assessing the 
behavior and physical characteristics of mice.  He evaluates available materials, and the strengths 
and weaknesses of existing designs.  He formulates and then refines his new design in the CAD 
system during the second week.  Assured that he has the perfect design, he transmits his 
"drawings" to the prototype shop and to the production department.  By the end of the third 
week, the prototypes are completed - in exact accordance with his design specifications.  Next 
week, the units are set up for functional testing in the lab.  All goes well for several days until . . . 
one morning the mouse escapes!  The trap has failed!  And the boss wants to begin production 
next week!  
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 The above situation illustrates one reality of the design process - that no matter how good 
the designer or how helpful the CAD system, NO design can be expected to be perfect coming 
off the "drawing board."  The functional requirements may push the state-of-the-art.  Actual 
environmental conditions may differ from those expected.  Wrong parts or materials may be 
selected.  And analyses and/or supporting data may be in error.  Thus, the initial paper design 
will only be partially complete, the degree of completeness depending upon the skill of the 
engineers, resources available and other factors.  To complete the design, the actual 
hardware/software must be operationally tested, remaining design imperfections must be 
identified, and permanent corrective action must be implemented and verified.  This process of 
refining the design is sometimes called Reliability Growth. 
 
10.2. Reliability Growth
 
 Reliability growth is defined in MIL-HDBK-189 (Ref 1) as:  
 
 "The positive improvement in a reliability parameter over a period of time due to changes 
in product design or the manufacturing process." 
 
This definition identifies three aspects of reliability growth: 
 

− It can be measured, 
− It takes time, and 
− It requires change in the product and/or processes. 

 
10.3. Measuring Reliability Growth
 
Reliability is generally quantified in one of three ways: 

 
1. As a probability (e.g., the ratio of successful missions to total missions) 

 
2. As a rate (e.g., the number of "failures," removals, maintenance actions, etc. per unit 

time) or 
 

3. As an average interval between events (e.g., Mean Time Between Failure (MTBF), 
Maintenance Actions (MTBMa), etc). 

 
 Any of the above measurements can be used to assess the current status of reliability and 
to track the improvement as a result of applying the TAAF process.  In this chapter we will use 
the third type of measurement to discuss tools to help plan for and track reliability growth. 
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 To illustrate, the following data were recorded for six consecutive periods of system 
operation. 
 

Period Operating Hours Failures MTBF 
  

Period
 

Cum
in Each 
Period

in Each 
Period

1 
2 
3 
4 
5 
6 

100 
100 
200 
600 

1000 
1800 

100 
200 
400 

1000 
2000 
3800 

20 
12 
20 
48 
66 

100 

5.0 
8.3 

10.0 
12.5 
15.2 
18.0 

 
 The data indicate that the reliability (i.e., MTBF) improved from 5 hours to 18 hours.  
Figure 1 shows this reliability growth graphically. 

 
Figure 1  
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10.4. Reliability Growth - Time
 
  "As a generalization, it might be said that the built-in reliability is proportional to 
the time allowed the supplier to design, debug, produce a pilot run, and incorporate changes or 
improvements in production as a result of feedback from field experience . . . Time is the mortar 
which binds this whole structure of reliability together . . . Reliability cannot be achieved on a 
crash basis . . ." (Ref 2) 
 
 
 As the quotation indicates, sufficient time is required to achieve the desired reliability.  
Furthermore, that time may be during the design/debug phase, the production phase, or the 
fielded phase.  In effect, reliability growth can take place anytime during the acquisition cycle 
where hardware/software is available for testing.  Growth processes can also be applied at a 
variety of levels of assembly - from a "breadboard card" in the lab as well as to a major 
subsystem in a newly deployed aircraft.  In this chapter we will encourage the use of reliability 
growth techniques during the engineering and manufacturing development (EMD) phase of the 
acquisition cycle.  However, these techniques can be applied before and/or after EMD. 
 
10.5. Reliability Growth - Change
 
 Changing materials or a part in the design is one way to correct a problem.  Example: The 
F-111A radar subsystem was experiencing frequent failures of expensive traveling wave tubes.  
Five of these $66,000 tubes were replaced at one base in a single month period!  Through 
engineering analysis, the fault was traced to an original design error.  The value of a single 
resistor was not correct for the specific application.  Resistors with the correct design value were 
installed and the cost of supporting the system was reduced significantly. 
 
 Other problems may be related to the quality of the manufacturing process.  A two-
million dollar missile was lost during a flight test due to a tiny fragment of foreign material 
lodged in a coil of very fine wire.  The fragment eventually cut through the insulation of the wire 
and caused an electrical short!  No change in the design was required, but improved quality was 
considered. 
 
 Change is the key to effective reliability growth.  Just repairing a broken unit does not 
achieve reliability growth.   
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10.6. Reliability Growth and the TAAF Process
 
 There are three steps to achieving change that results in reliability growth; they are 
frequently called "test, analyze, and fix," or simply TAAF.  
 

TEST!       ANALYZE!    and    FIX! 
 

 Test - Stimulate Failures 
 
 Test means to operate the equipment so that deficiencies can be observed.  Both hardware 
and software are designed to perform specific functions under expected operational 
environments.  For example, a farm tractor is expected to be able to develop enough traction and 
power to plow hard ground.  The engine and other components must operate in dirty/dusty 
conditions continuously for many hours without servicing or repair.  Deficiencies in the design 
of a farm tractor will not appear if the tractor is tested by just placing it in a barn with the engine 
idling.  The tractor must be placed under STRESS to see if the design will perform necessary 
functions reliably. 
 
 It is sometimes impractical to place test articles in the actual environment.  Space systems 
are good examples - it would be extremely difficult and costly to try to debug a satellite in space!  
An alternative to taking the test articles to the actual environment is to bring a simulated 
environment to the test article.  For example, the Air Force has wind tunnels to simulate high 
altitudes and supersonic air flow for testing aircraft and missile engines.  For airborne electronic 
systems, testing is frequently performed in relatively small chambers on the ground. There, 
environments such as temperature, vibration, humidity, power quality and on/off cycling can be 
varied to simulate the operational environment.  Section 10-12 has additional information on 
environments. 
 

 Analyze - Root Causes 
 
 Analyze means to determine the root cause of the problem.  For example, just finding and 
replacing a failed integrated circuit (IC) on a card is not sufficient.  The IC must be carefully 
studied and disassembled if necessary to find the root cause.  For example, the root cause of the 
failure of a critical IC in a space shuttle computer was human spittle.  Sealed into the package at 
the time of manufacture, the spittle eventually corroded the minute features on the IC and caused 
it to fail.  Also possible is the fact that the IC is really OK and the real cause of the malfunction 
is elsewhere, such as a bad solder joint. 
 

 Fix - Permanent Corrective Action 
 
 Fix involves developing a new design or manufacturing process to permanently improve 
the product.  This means more than just incorporating a change.  It also involves retesting the 
equipment to verify that the fixes are effective, permanent, and do not induce additional new 
failure modes.  One reliability growth expert claimed that approximately 30% of all corrective 
actions were ineffective. (Ref 3) 
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10.7. Informal TAAF
 
 As indicated above, the process of testing, analyzing, and fixing takes time and other 
resources such as test assets, test chambers or other facilities, manpower, etc.  Some TAAF may 
occur spontaneously as the results of malfunctions that occur during normal development testing.  
Corrective actions frequently result from such "informal" TAAF.  But experience has shown that 
the best way to thoroughly "debug" a system is to plan for a formal, structured period of time to 
focus on this TAAF process. 
 
10.8. Formal TAAF
 
 Formal TAAF, sometimes called a Reliability Development/Growth Test (RD/GT), is 
documented in a plan, generally a part of the overall contractual R&M Program Plan (See section 
10-18 for additional information).  A TAAF process should continue until a predetermined 
number of hours have been accumulated, or preferably until the system has achieved a desired 
level of reliability.  Questions:  How many hours should one plan for?  How many test assets are 
required?  What level of reliability can be achieved in a certain period of time? 
 
10.9. The Duane Reliability Growth Model
 
 As we saw in figure 1, the MTBF continued to improve as additional test time was 
accumulated.  If there was a way to quantify the relationship shown in that figure, the above 
questions might be answered. 
 
 In 1962, a General Electric employee, J. T. Duane developed a simple graphical and 
mathematical model of the reliability growth process (Ref 4).  He collected and analyzed large 
quantities of time and failure data on several systems undergoing test.  He discovered that if he 
plotted cumulative values of operating test time and failure rate on logarithmic (log-log) paper, 
that the data points approximated a straight line.  We can use our original data to illustrate 
Duane's observation.  Note:  Duane's original data was expressed in terms of failure rates, but for 
most applications, we prefer to use Mean Time Between _____ values such as MTBF, MTBR, 
and MTBM. 
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Step 1: Calculate the Cumulative MTBF values as follows: 
 

 
 
 

Period 

Operating 
Hours 

For 
Period 

 
Operating 

Hours 
Cumulative

 
Failures 
in Each 
Period 

 
MTBF 
in Each 
Period 

 
 

Cumulative 
failures 

 
 

Cumulative.
MTBF 

1 100 100 20 5.0 20 5.0 
2 100 200 12 6.3 32 6.3 
3 200 400 20 7.7 52 7.7 
4 600 1000 48 10.0 100 10.0 
5 1000 2000 66 12.0 166 12.0 
6 1800 3800 100 14.3 266 14.3 

 
Step 2: Plot cumulative MTBF values vs. cumulative operating hours on log-log paper (see graph 
below).  As you can see, the data points are approximately in a straight line. 
 

Figure 2 
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10.10. The Growth Rate - α
 
 Duane's next (third) step was to draw a "best-fit" straight line through the data points and 
calculate the "slope" of the line.  Duane then used the value of the slope of the line to develop 
relationships between test time and achieved reliability. 
 

Figure 3  Line Fitted to Data 
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The slope, which we will designate with the symbol alpha (α), can be calculated as follows:  Pick 
any two points on the straight line just drawn (e.g. 100 and 3800 operating or test hours, and 5 
and 14.3 hours MTBF).  Calculate α via the following formula: 
 

29.
5798.1
4564.0

38 log
86.2 log

)100/3800( log
)5/3.14( log

)1time/2time( log

)1MTBF/2MTBF( log

====α

=α
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10.11. Interpreting the Growth Rate
 
 The slope has three valuable functions:  (1) To provide a method to determine the current 
MTBF of an item, (2) to indicate the effectiveness of the TAAF process, and (3) to allow the 
development of a mathematical relationship between test time and MTBF. 
 

 Current MTBF 
 
 The last MTBF value (14.3 hours at 3800 test hours) on the Duane log-log charts was 
calculated by dividing the total number of test hours accumulated to date by all the failures 
observed to date.  This cumulative MTBF or MTBFc is an average MTBF over the period.  Since 
the MTBF has improved with time, the current value should be greater than this average MTBF.  
If we go back to the original data, we see that for the last period, 1800 hours divided by 100 
failures equals 18 hours MTBF.  As expected, this value is greater than the average MTBF for 
the entire 3800 hours.  Note, however, that this 18 hour value is itself an average.  So the 
question remains: What is the MTBF after 3800 hours of test time? 
 
 The Duane model states that the current, or instantaneous MTBF (MTBFI), is a simple 
function of MTBFc and α: 
 

α−
=

1
CMTBF

IMTBF  

 
 To determine the current MTBF at 3800 hours: 
 

  MTBF hours 4.20
29.1

hours 3.14
1

CMTBF
IMTBF =

−
=

α−
=  

 
 As expected, the current MTBF at 3800 hours is  significantly greater than the 14.3 
average value and is even greater than the 18 hour value observed over the last 1800 hours.  The 
interpretation of this current MTBF is that (1) if no additional improvements are incorporated, 
(2) if there are no changes in the way the system is operated and maintained, and (3) if the 
system does not age, then the system will theoretically demonstrate a relatively constant 20.4 
hours MTBF for the remainder of its useful life. 

10 - 9 



 Growth Data for a Second System 
 

 
 

Period 

Operating 
Hours -  
Period 

Operating 
Hours -  

Cumulative

Failures 
in Each 
Period 

MTBF 
in Each 
Period 

 
Cumulative 

failures 

 
Cumulative.

MTBF 
1 100 100 20 5.0 20 5.0 
2 100 200 10 10.0 30 6.7 
3 200 400 16 12.5 46 8.7 
4 600 1000 35 17.1 81 12.3 
5 1000 2000 44 22.7 125 16.0 
6 1800 3800 65 27.7 190 20.0 

 
 Figure 4 shows two cumulative data lines: One is of our original system; the second line 
represents the second system.  Note that both systems were tested for 3800 hours and began with 
the same MTBF (5 hours).  But note the steeper slope (0.38 vs. 0.29) and higher cumulative 
MTBF (20.0 vs. 14.3) at the end of the test.   
 

Figure 4 Different Growth Rates 

Cumulative Operating Hours

M
T

B
F 

(h
ou

rs
)

100 1000 10000

10

100

1

α = 0.29    

     α = 0.38 

 

10 - 10 



Using Duane's conversion formula, the second system achieved: 
 

eous)(instantan  MTBFhours 32  
0.38 - 1 

e)(cumulativ  MTBFhours 20.0  
+=  

 
vs. 20 hours for the initial system!  Why the significant difference in achieved MTBF for the 
second system?  The answer is that the TAAF process was more effective in the second system 
test program.  In the first period, 20 failures were found in each test program.  However, more 
effective failure analyses and corrective actions resulted in fewer failures occurring in the second 
and subsequent periods.  The slope of the cumulative curve is therefore, an indicator of the 
effectiveness of the TAAF process. 
 
 Actual growth rates vary significantly between equipment, environments, and programs.  
But, typically, growth rates range from 0.1 (only critical failure modes are corrected, slowly) to 
0.6 (most failure modes are corrected, quickly).  One study (Ref 5) showed that (1) if all 
systematic (repeat) failure mechanisms are flagged for corrective action after the second 
occurrence, and (2) an effective fix is incorporated into the test items by a time equal to four 
times the MTBF of the uncorrected failure mechanism, the theoretical growth rate is 0.6.  If 
alternate systematic failure mechanisms are effectively corrected under the same conditions, 
the growth rate is 0.23. 
 
Higher growth rates allow us to: 
 
 1. Achieve higher levels of reliability for the same amount of test time, OR 
 
 2. Achieve a specific reliability goal in a shorter period of time. 
 
 If we look again at the data for the second system, we see that at 1000 cumulative test 
hours, the system has achieved a cumulative MTBF of 12.3 hours.  Converting that into an 
instantaneous value results in an achieved reliability of 19.8 hours MTBF.  Thus, we could 
achieve essentially the same instantaneous MTBF for the second system as achieved for the first 
but with only 1000 hours of testing vs. 3800.  Those additional 2800 test hours represent 
additional costs and program schedule time - not desirable conditions.  Question: How does a 
program manager plan for a TAAF program?  How much time should he or she allocate?  How 
much will it cost? 
 
10.12 Relating Time and Alpha to Reliability Growth
 
 The cumulative MTBF line, being a straight line on log-log paper, can also be expressed 
as an equation.  Let's go back to our equation for calculating the slope of the cumulative line. 
 

) 1/time2 time( log

) 1/MTBF2 MTBF( log
 =α  
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 If we are concerned about the total time (time2) required to achieve a desired MTBF, let's 
rearrange this equation accordingly.  
 
     log ( time2/time1 ) = (1/α) log ( MTBF2/MTBF1 ) 
 
     log ( time2/time1 ) = log [( MTBF2/MTBF1 )1/α] 
 
Taking the anti-log of both sides: 
 

time2/time1 = (MTBF2/MTBF1)1/α, so 
 
 time2 = time1(MTBF2/MTBF1)1/α or 
 

α1/

1MTBF
2MTBF

1 time 2time
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=  

 
Using the terminology in MIL-HDBK-189 (Ref 1), 
 time2 (total operating time) is designated by "T," 
 time1 by " t1"; and 
 MTBF1 by "MI."  Thus, 
 

α/1
 1

2
⎥
⎦

⎤
⎢
⎣

⎡
=

IM
MTBFtT  

 
 The above equation quantifies the amount of operating time required to achieve MTBF2.  
But MTBF2 is a cumulative MTBF, and we are concerned about achieving an instantaneous or 
current MTBF (MF).  We must change the cumulative MTBF to a current MTBF using Duane's 
conversion formula. 
 

)-(1
 MTBFCumulative  (MF) BFCurrent MT

α
=  

 
Thus, 
  Cumulative MTBF = MF (1-α). 
 
Substituting this relationship for MTBF2 our final formula is: 
 

α

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ α
=

/1

IM

)-(1FM
 1  t  T  
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 T = Total test time (including t1) required to achieve MF. 
 t1 = The initial amount of test time associated with an initial, cumulative MTBF ( MI ). 

 Note: T includes the t1 time.  Therefore, the formal RD/GT time = T - t1
 MF = The required or desired level of instantaneous MTBF 
 MI = The initial cumulative MTBF that is observed at time t1

 α  = The growth rate 
 
 
10.13. Duane Growth Model - Initial Characteristics 
 
 The above equation is simple to calculate, but where do we get the values for the 
variables t1, MI, and α to plan a TAAF program for a new item?  Fact: you will only know the 
true value of these variables after you have conducted the TAAF.  However, it is possible to 
estimate values for each variable. 
 

 t1 and MI.  Duane observed the following relationship in his data sets:  When t1 was 
approximately equal to 50 percent of the mature, predicted MTBF value (or 100 hours, 
whichever was greater), MI was approximately 10 percent of that same mature, predicted 
MTBF (e.g. via MIL-HDBK-217).  With this relationship, Duane provided a "starting point" 
for planning a TAAF program. 

 
NOTE 1: MI could be interpreted two ways, either as a cumulative MTBF or as an 
instantaneous MTBF.  In an actual program, the small amount of data collected during t1 is 
generally insufficient to perform a reliability growth analysis and determine the instantaneous 
MTBF at time t1.  Therefore, it is a logical assumption that MI is an average or cumulative 
value.  (MIL-HDBK-189 specifically defines MI as a cumulative value.) 
 
NOTE 2: The 10 percent estimate for MI is an average, default value based upon experience 
from many programs.  The actual value varies, with one study showing a range from 4 to 26 
percent (Ref 6).  The higher percentages might be expected for systems that use more mature 
technologies/components or for systems that have more intense reliability design/management 
efforts early in the program. If historical experience is available that indicates a more probable 
starting percentage - use it instead of the "default" values. 
 
NOTE 3: If the initial MTBF achieved during an RD/GT is greater or less than the planned value 
of MI, then the TAAF plan should be reevaluated. 
 

 Alpha (α).  As with t1 and MI, α is best estimated on the basis of past performance.  There 
are many variables to be considered and the resulting value for α will be very subjective.  
Some of those variables are: 

 
 a. Actual reliability growth rates from previous programs.  Historical data (ideally on 
similar equipment from the same manufacturer) is probably the best source for an initial α. 
 b. Relative maturity of the new item.  Mature items generally have less potential for 
improvement.   
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 c. Phase of program (development or fielded).  A RADC study reported that many 
programs achieve a growth rate of between 0.3 and 0.5 for systems still in the development 
phase.  For fielded systems, including warranted items, the growth rate drops to between 0.1 and 
0.3 (Ref 7) 
 
 d. The similarity of the new item to existing items (e.g., technology, complexity, 
manufacturing techniques, etc).  A Westinghouse report indicated the following relationship 
between cost/complexity and growth rate: 
 

System Complexity  α 
High cost, high technology 
Medium cost, state of the art 
Low cost, off the shelf 

 .5 
.4 
.3 

 
 e. The severity of the environment.  Debugging is much more effective if testing is 
accomplished in actual or simulated operational vs. a benign environment. (Ref 6) 
 

Environment  Relative Growth Rate 
TAAF/Stimulating 
Simulated mission 
Benign 

 .5 
 .35 
.2 

 
More deficiencies are discovered in a shorter period of time, and some deficiencies may never be 
discovered in a benign environment.  These hidden deficiencies will only be discovered when the 
equipment is fielded! 
 
 If testing in an operational or simulated operational environment is better than testing in a 
benign environment, is it possible that testing in an environment that is more severe than the 
operational environment be even more effective?  Possibly.  The answer is very dependent upon 
the design of the equipment and the severity of the environment.  In general, a more severe 
environment will cause failure modes to appear more quickly.  The problem is that the more 
severe environment may cause additional failure modes that may never occur in the field and 
may have a negative effect upon the conduct of the TAAF process.  If more severe stresses are to 
be used, they should be increased in small increments and the reaction of the units on test should 
be observed carefully.  The stresses can be increased until failure analysis indicates that the 
failure modes being observed are resulting from stresses beyond the ultimate design capability, 
and that these failure modes should not occur in the normal operational environment.  This 
process is called step-stress testing. 
 
 f. Other factors include:  Cost and schedule constraints, existence of a plan for a 
warranty, availability of test assets and facilities, the ability of the contractor to perform adequate 
failure analysis and develop/incorporate effective corrective actions, and perhaps most of all, the 
attitude of the program managers for the government and the contractor 
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10.14. Planning a Formal RD/GT Program - An Example
 
 An item has a requirement to achieve 1500 hours MTBF before it can begin a reliability 
qualification test.  The item has a predicted MTBF of 2500 hours.  A TAAF program is being 
developed using an expected α of 0.35.  How many test (operating) hours are required to achieve 
the desired MTBF? 
 
 MF = 1500 hours 
 α = 0.35 
 t1 = 50% of 2500 hours = 1250 hours 
 MI = 10% of 2500 hours = 250 hours 
 
Using our formula: 
 

)(   047,61

857.2)9.3(1250
857.2

250
975 1250

35.0/1

250
)35.01(1500 1250

/1)1( 1

OHhoursoperating

T

T

MI
MFtT

=

=⎥⎦
⎤

⎢⎣
⎡=

⎥⎦
⎤

⎢⎣
⎡ −

=

⎥⎦
⎤

⎢⎣
⎡ −

=
αα

 

 
 Note: T includes the t1 time.  Therefore, the formal RD/GT time = T - t1 = 61,047 - 
1,250 = 59,797 oh 
 
 The above reliability growth plan is shown graphically in Figure 5. 
 

10 - 15 



Goal

Predicted

Initial

Planned Growth 

Cumulative Operating Time

1000 10000 100000 

100 

1000 

10000 

M
TB

F 
Figure 5: A Reliability Growth Plan – based on the Duane Model

 
Note that the slanting line represents the expected growth in the cumulative MTBF, not the 
instantaneous.  Also note that "T" includes all operating hours, including the initial test hours 
"t1". 
 
The number of operating hours for any proposed growth plan can be calculated via the above 
formula, or a rough estimate of the test time can be calculated via the table in the Appendix at the 
end of this chapter. 
 
 
10.15. Calendar Time to Achieve a Desired Level of Reliability
 
 If we were to place a single unit on test, it would only take 61,047 hours ÷ 8760 hours/yr. 
or 6.97 years to achieve the 1500 hours MTBF!  Actually it would take longer.  The above 
equation is based on operating hours.  During an actual TAAF, the equipment will be turned off 
for: (1) evaluation/repair of the test item, (2) repair/adjustment of the test chambers/facilities, and 
(3) periods when the equipment is being cooled during a temperature cycle.  For one radar 
program, the planned test efficiency was only 33% (Ref 5). Thus, for every hour the equipment 
is actually operating, it can be off for an additional two hours.  Therefore, in our example, the 
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equipment would have to be in the TAAF program for 61,047 x 3 or 183,141 calendar hours or 
20.9 years. 
 
 Obviously no manager is willing to wait 13.7 years to make a decision on a program!  
The test time must be shortened.  We will look at three general approaches to reducing the 
calendar time:   
 

- Increasing the number of test assets 
- Improving the effectiveness of the test analyze and fix process 
- Improving the inherent reliability of the item 

 
 Increasing the Number of Test Assets 

 
 Increasing the number of items in the test is beneficial in that the calendar time is 
inversely proportional to the number of items on test.  The more items - the shorter the time.  
Another benefit of putting additional items on test is that additional failure modes can be 
observed and corrected. 
 
 If, in our example, we were to put ten items on test, the total test time would be reduced 
to 13.7 α 10 or 1.4 years.  An obvious improvement, but over a year is still a long time.  And, we 
must set aside funds for ten units vs one.  We may even require additional test equipment in 
order to monitor multiple test items.  So, just putting additional units on test may not be the best 
answer. 
 

 Increasing the Effectiveness of the TAAF Process - α 
 
 As discussed earlier, α is an indicator of the effectiveness of the TAAF process.  If the 
emphasis on finding and fixing problems was increased, this would appear as an increase in α. 
 
If we assume α can be improved to 0.5, 
 

unit) test oneonly  (with  years2.3  hourscalendar  20,000  2x  10,000 
hours operating  RD/GT10,000  1250 - 11,250or   hours, operating  total11,250 

2)3( 1250
0.2

250
750 1250T

5.0/1

250
)5.01(1500 1250T

===
==

=⎥⎦
⎤

⎢⎣
⎡=

⎥⎦
⎤

⎢⎣
⎡ −

=

 

 
 Increasing the growth rate obviously improved the program schedule, but 3.9 years is still 
too long.  And, as we will discuss in section 10.16, increasing the growth rate requires additional 
effort and expense. 
 

 Improving the Inherent Reliability of the Item 
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 The third approach to reducing the calendar time is to improve the predicted reliability by 
improving the inherent design of the item.  To illustrate, we will assume that the design can be 
improved and the predicted MTBF increases to 4000 hours.  This means that 
 
 t1 = 50% of 4000 (vs 2500) hours = 2000 hours 
 MI = 10% of 4000 (vs 2500) hours = 400 hours 
 

item. test singlea only  use  weif  years5.4or  hourscalendar  47,006  2x  23,503  
 oh  RD/GT23,503  2000 - 25,503  

or hours, operating  total61,047) (vs 25,503  

857.2)4375.2( 2000
857.2

400
975 2000T

35.0/1

400
)35.01( 1500 2000T

==
==

=

=⎥⎦
⎤

⎢⎣
⎡=

⎥⎦
⎤

⎢⎣
⎡ −

=

 

 
 Combining Techniques 

 
 Let's combine the RD/GT reduction techniques as follow: 
 
 Number of test units = 5 (less costly than 10) 
 Projected growth rate = 0.4 (more conservative than 0.5) 
 Predicted MTBF = 3000 hours. (more achievable than 4000 hrs) 
 
Then: t1 = 50% of 3000 hours = 1500 hours 

MI = 10% of 3000 hours = 300 hours 
 

hourscalendar  43,766or  2x  21883  
hours  RD/GT21,883or  hours, operating 23,383   T

5.2)3( 1500
5.2

300
900 1500T

4.0/1

300
)4.01( 1500 1500T

=
=

=⎥⎦
⎤

⎢⎣
⎡=

⎥⎦
⎤

⎢⎣
⎡ −

=

 

 
 With 5 units on test, 
 
 Total calendar time = 43,766  ÷ 5 
     = 8753 calendar hours or approximately 12 months. 
 
A year is still a long time.  Additional iterations may be necessary to arrive at a more reasonable 
time to conduct a formal RD/GT 
 

10 - 18 



10.16. Cost of Achieving a Reliability Objective in Less Time 
 
 Improving the reliability is not without some additional initial cost.  If additional units are 
to be tested, they must be built.  More environmental chambers, test/monitoring equipment 
and/or facilities may be required.  If the TAAF process is to be more effective, additional 
engineering effort is required to carefully analyze more failure modes, to develop additional 
corrective actions, and/or do everything quicker.  If the design is to be improved, this also 
requires additional engineering effort and/or higher quality/more expensive parts/materials.  The 
bottom line is that improving the achieved reliability of an item in development will probably 
result in an increased cost for the production units.  This may, however, be offset by improved 
readiness/performance and decreased logistics resource requirements in the field! 
 
 
10.17. Achieved MTBF for a Given Number of Test Hours
 
 Another way to look at these reliability growth relationships is to ask the question: "What 
reliability can I achieve if the item is tested for x hours or y more hours?"  To answer this 
question, we can rearrange the equation we have been using into the following form: 
 

α

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

α−
=

1t
T

)1(
IM

FM  

 
 If we take our last example system and only test for 3000 operating hours, what MTBF 
can we expect to achieve? 
 

.MTBF hours 1000 of goal our than less ,hours 5174.)3(
6.

200

4.0

hours 1000
hours 3000

)4.1(
hours 200MF

==

⎥⎦
⎤

⎢⎣
⎡

−
=

 

 
Again, if we improve the inherent design potential (predicted MTBF) and/or the effectiveness of 
the TAAF process (indicated by α), then the achieved MTBF will be greater.  For example, if we 
increase α to 0.45, the achieved MTBF = 
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10.18. Projecting Growth into the Future
 
 Consider the situation where an item has already demonstrated a certain reliability, either 
through a formal TAAF process or maybe as the result of field use.  Can it be improved further?  
Possibly.  For example, assume we have a system that accumulated 50,000 flight hours in the 
field, had a growth rate of only 0.1, and has a current, instantaneous mean time between 
maintenance (MTBM) of 50 hours.  Management decides to increase the emphasis on finding 
and fixing problems.  Assuming a new growth rate of 0.25 for the next 20,000 hours, what new 
level of reliability can be expected at the end of this additional time?   
 

α

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

α−
=

1t
T

)1(
IM

FM  

 
 Looking at our formula above, we have all the information we need, except MI.  MI is a 
cumulative value and all we have is an instantaneous value of 50 hours.   
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 Substituting into our original equation, we get: 
 

MTBMhours3.65

25.0)4.1( 60
25.0

50,000
70,000

)25.01(
45

FM

=

=⎥⎦

⎤
⎢⎣

⎡
−

=  

 
 Note that "T" is equal to the sum of the additional hours planned AND all the previously 
accumulated test time.  When performing a reliability growth assessment on an already existing 
system, it is important to always include ALL the previous operating hours. 
 
 
10.19. Managing a Formal RD/GT Program
 
 Managing a formal RD/GT program requires much advanced planning.  Consideration 
should be given to applying TAAF during the EMD (engineering and manufacturing 
development), production, and fielded phases.  The RD/GT should be integrated into the overall 
program schedule.  Funds must be allocated for additional test assets, test equipment, 
engineering analysis/design effort, etc.  It also requires development of detailed operating 
instructions concerning the conduct of the TAAF to include: detailed reporting of malfunctions, 
thorough and timely failure analysis, and careful verification of effective corrective actions.  
Tasks associated with a reliability growth program should be specified in the contractual 
statement of work.  Following is a brief example of a SOW task for reliability growth: 
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 "Four preproduction units shall be placed in environmental chambers and functionally 
operated for a period of 1000 operating hours.  During this period, the four units in the chambers 
will be subjected to thermal cycling, random vibration, and humidity in an attempt to discover 
design weakness.  As malfunctions occur, associated data shall be entered into a closed-loop 
failure reporting, analysis and corrective action system (FRACAS).  The malfunctioning units 
will be troubleshot in order to isolate the cause, and the malfunctioning unit(s) will be removed 
and sent to a shop for additional diagnosis and evaluation.  Other test units will continue to 
operate.  As soon as possible, each malfunctioning unit will be repaired and returned to the 
chamber for continued TAAF testing.  As fixes are incorporated in the test items, additional 
hours will be accumulated to verify the effectiveness of the fixes and identify any new failure 
modes.  As additional malfunctions occur, trends and patterns will be analyzed by the failure 
review board.  The effectiveness of the TAAF process will be tracked against the approved 
growth plan." 
 
 It is not the intent of this chapter to discuss the many details of managing an RD/GT 
program.  Good sources for such information are: 
 
 - MIL-HDBK-189, Reliability Growth Management (Ref 1) 
 - MIL-STD-785, Reliability Program Plan (Ref 8).  
 - The TAAF Process - A Technical Brief For TAAF Implementation, Jan 1989 (Ref 9). 
 
 
10.20. Other Reliability Growth Models
 
 The primary tool discussed in this chapter is the "Duane" model.  It is important to know 
that the Duane model is only one of many mathematical relationships that have been developed 
to characterize the reliability growth process.  Other models include: AAMSA (developed by the 
US Army, Ref 1), IBM, and Lloyd-Lippow.  Each of these models has advantages and 
disadvantages.  One model may mathematically model one type of system better than another 
model.  Some models have the ability to address both "latent defects" and "random" failures.  
However, there is a significant reason we have not addressed these other models in this chapter. 
 
 Most other models are dependent upon the availability of detailed experience data, 
especially the time-to-fail for each observation.  For most situations in the Air Force, we do not 
have this detailed data.  We generally only have time and failure data aggregated over intervals 
of time (e.g., monthly).  The Duane model may not always be the best model to use, but it is one 
that can be used with aggregate data. 
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10.21. Summary
 
 In this chapter we have discussed the TAAF process as a means to achieve a reliability 
objective.  However, TAAF is not a stand-alone process.  Good design must be coupled with a 
TAAF in order to have a reasonable chance of meeting a stated objective.  In other chapters in 
this textbook, you will also discover how the TAAF process can be applied to other related 
activities, namely Reliability Qualification Testing, Production Reliability Acceptance Testing, 
and Environmental Stress Screening 
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Appendix A 
 

Operating time required to achieve MTBF objective (Duane model) 
(in multiples of predicted MTBF) 

Objective as 
Percent of  

 Planned (expected) Growth Rate (α) 

Predicted MTBF  0.1 0.2 0.3 0.4 0.5 0.6

100 
 80 
 60 
 50 
 40 
25 

 1.74x109
1.87x108 

1.05x107

70x106

183K
1663

16.4K
5369
1274
512
168
16.0

328
156
59.8
32.5
15.5
3.23

44.1 
25.2 
12.3 
7.79 
4.46 
1.38 

12.5
8.00
4.50
3.13
2.00
.781

5.04
3.47
2.15
1.59
1.09
.500

 
1. For a predicted MTBF (MTBR, MTBM, etc.) less than or equal to 200 hours, the total 

number of operating hours is equal to the appropriate factor from the table above times 200. 
 

Example:  Predicted MTBF = 80 hours 
MF goal = 48 hours (60% of predicted)  
Expected growth rate = 0.3 
Factor from table = 59.8 

 
Total test time = 59.8 X 200 = 11,960 operating hours. 

initial, cumulative MTBF ( MI ).  Note: T includes the 
t1 time.  Therefore, the formal RD/GT time = T - t1 = 

 
11,960 - (50% x 200[not the predicted in this case]) 
= 11,860 operating hours 

 
2. For predicted MTBF greater than 200 hours, multiply the above table value by the 

predicted MTBF. 
 

Example:  Predicted MTBF = 3000 hours 
MF goal = 1500 hours (50% of predicted) 
Expected growth rate is 0.4 

 
Total test time = 7.79 X 3000 = 23,370 operating hours. 
Formal RD/GT time = 23,370 - (50% x 3000[predicted]) 
= 21,870 operating hours 

 
Note: The times calculated via this table are the total planned operating or "on" hours for the 
equipment undergoing RDGT/TAAF.  The total planned calendar time will be a function of the 
ratio of total hours to "on" hours and the number of units on test. 
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SYMBOLS, TERMS AND EQUATIONS USED IN RELIABILITY TESTING 
 
OC Curve = Operating Characteristic Curve 
RDGT = Reliability Development Growth Testing 
TAAF = Test Analyze and Fix 
Test Conditions 
 
 α = the chance of rejecting a system whose MTBF is Θo

     1-α = the chance of accepting a system whose MTBF is Θo

 
 β = the chance of accepting a system whose MTBF is Θ1

 β = 1.0 - confidence stated in the specification 
 
 1 - β = Confidence that the system MTBF (or reliability) 
   is at least Θ1 (or lower test Reliability) if the  
  reliability test is passed 
 1 - α = Confidence that the system MTBF (or reliability) 
  is at least Θo (or upper test Reliability) if the  
 reliability test is passed 
 
 Θ = possible MTBFs for the system  
 Pa = probability of acceptance. 
 
 R1 = lower test reliability 
 Ro = upper test reliability 
 
 P1 = lower test unreliability 
 Po = upper test unreliability 
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11.1.  Introduction 
 
 Testing should be considered as a means of uncovering 
weaknesses in either the design process or the production 
process. During the design process it begins as soon as small 
assemblies are available and continues through each stage of 
assembly culminating with reliability qualification test (RQT). 
 
 During the production stage testing begins with the parts 
that are either manufactured in house or purchased from vendors 
and continues through the assembly of the product concluding with 
the production reliability acceptance test (PRAT).  It is 
important to ensure that the assemblies be free of defects before 
proceeding to the next stage of production.  It is also important 
that processes be operator controllable, where operators: 
 
 -  have all the knowledge they need to do their work,  
 -  are provided with equipment that is capable of meeting   
          the specs,  
 -  have adequate resources, 
 -  get feedback on their efforts, 
 -  work in an environment conducive to producing quality  
 products, 
 -  understand that quality is important and see quality  
 visually demonstrated by the leaders in the  
 organization.   
 
 This section begins with an overview of the various tests 
that occur during development and production but most of the 
section deals with the Reliability Qualification Test (RQT), the 
Production Reliability Acceptance Test, (PRAT), and the Quality 
Assurance testing during production.  RQT and PRAT differ only in 
their application, RQT is conducted during development and PRAT 
is conducted during production.   
 
 A summary of the different kinds of tests that could be 
conducted include:   
 
Pre-Production: 
 Prototype Tests 
 Breadboard Tests 
 Accelerated Tests 
 Reliability Development Growth Tests (RDGT) aka (TAAF) 
 Environmental Tests 
     Reliability Qualification Tests (RQT)  
 
Production: 
 Receiving Inspection Tests 
 First Article Tests  
 Quality Assurance Tests  
     Performance Tests 
 Production Reliability Acceptance Tests (PRAT)  
 Packaging Tests 
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 Life Tests 
 
 
11.2.  Pre-Production Tests
 
 Pre-production tests are conducted for the purpose of 
enhancing the equipment design or to demonstrate a requirement. 
 
1. Prototype and breadboard tests are conducted early in the 
development stages to determine the status of the design and 
design changes.   
 
2.  RDGT is used to help grow the MTBF to an acceptable level, 
hopefully to the design level.  RDGT is discussed in another 
chapter. 
 
3.  Environmental tests are conducted to insure that the 
equipment will not fail in various environments such as, sand and 
dust, immersion, shock, explosive decompression, etc.  These 
tests are usually conducted using very small sample sizes.  For 
some products these tests are also conducted on production units, 
e.g., automobiles are driven through a water spray to check for 
leaks. 
 
4.  Accelerated tests are conducted under greater stress to 
shorten the length of a test.  These tests are somewhat unusual 
and are used primarily when the time to test under normal 
conditions would be extremely lengthy.  Accelerated tests are 
often used to determine the life of a system.  For these tests it 
is critical that the relationship between the accelerated test 
results and normal test results be known.  Accelerated tests 
could also be conducted with production units. 
 
5.  The Reliability Qualification test is conducted to 
demonstrate that the requirement (MTBF or failure rate) in the 
equipment specification has been achieved in the development 
process. 
 
 
11.3. Production Tests
 
 The tests on the second half of the list are conducted on 
production units to ensure that a requirement is met. 
 
1.  Receiving Inspection tests are performed to check dimensions 
and other engineering requirements on parts that have been 
purchased from a vendor or manufactured by the organization.  The 
purpose of a Receiving Inspection (RI) test is to ensure that 
products purchased from vendors meet their specifications.  
However, in some organizations products produced within a plant 
also pass through RI; in that case the production process is 
viewed as a supplier to the organization.  The decisions needed 
before initiating the tests are similar to those listed for QA.  
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For RI, the lot size is the amount received from the vendor.  
 
2.  First Article tests can have different meanings.  In the 
sense used in this text, first article refers to the tests or 
inspections made on the first three to five units that come off 
the production line.  The tests can be conducted on parts, 
assemblies or completed units.  The purpose of these tests is to 
qualify the equipment and the procedure used to produce the units 
being tested. 
 
3.  Quality Assurance tests are primarily inspections made during 
the production process on parts, assemblies, or final products.  
These tests are conducted to insure that tolerances are met, and 
can be conducted by production operators or quality assurance 
inspectors. 
 
4.  Performance tests are conducted to make sure each unit 
actually works, and meets all other requirements.  This is a 100% 
test and is often done by production personnel. 
 
5.  Production Reliability Acceptance Tests (PRAT) are similar to 
the RQT tests done at the end of the development phase, except 
that production units are used.  The purpose of these tests is to 
ensure that the production units meet the requirements. 
 
6.  Packaging Tests are conducted to determine how well the unit 
being shipped will survive handling and shipment to its final 
destination. 
 
7.  Life tests are performed to determine when the equipment 
reaches wearout if the equipment is electronic; for mechanical 
equipment the life test is performed to determine when the 
failure rate reaches a specified value.  The life of an equipment 
is generally not predictable unless historical data for similar 
units is available. 
 
 
11.4  Other Kinds of Testing
 
 Tests can also be classified in other ways such as: 
 
 -  Destructive vs. Non-destructive tests 
 -  Ambient vs Environmental 
 -  Actual conditions vs. Simulated  
 
DESTRUCTIVE vs. NON-DESTRUCTIVE: The tests listed above can be 
destructive or non-destructive depending on the characteristic 
being tested.  Testing a fuse, and testing bullets are 
destructive tests because the units being tested are destroyed in 
the test.  Other destructive tests include testing the tensile 
strength of metal, pressure testing cans, pulling welded joints 
apart, tasting food, etc.  Destructive tests are used when there 
is no other way to test the characteristic of a product.  There 
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can be more sampling risk with destructive tests because sample 
sizes are usually small. 
 
 In a non-destructive test the unit is not destroyed.  
Instead, measurements that are taken show if the product's 
characteristics are being met.  Non-destructive testing is 
usually less expensive and larger sample sizes can be taken which 
reduces the sampling risks. 
 
AMBIENT vs. ENVIRONMENTAL:  Ambient vs. environmental refers to 
the conditions under which the tests are conducted.  For RDGT, 
RQT, and PRAT it is recommended that the tests be conducted under 
specified environments that duplicate as much as possible the 
environments anticipated in use. 
 
 Ambient testing usually includes testing under static 
conditions when doing bench testing, checking part dimensions, 
etc.  These tests are usually cheaper and quicker than 
environmental tests. 
 
DISCRETE OR VARIABLE TESTS:  Some products can only be tested on 
a pass/fail criteria; these tests are called discrete tests and 
are based on the Binomial or Poisson distribution.  They require 
large sample sizes but it is possible to combine several 
characteristics in one test.  Control charts (np, p, c, and u) 
can be used to determine the stability of discrete processes. 
 
 Variable tests deal with measurements taken with some type 
of gauge, e.g., a watch, caliper, volt meter, thermometer, etc.  
These tests provide more knowledge about the product than 
discrete tests but take more time.  However, they do not require 
sample sizes as large as the discrete tests.  The data for these 
tests are often based on the Normal distribution, hence X-bar and 
R control charts can be used to determine process stability.   
Variables tests are usually preferred over discrete tests because 
they provide more knowledge about the product and the process 
producing the product. 
 
 Both discrete and variables tests can occur at any level in 
the production of the system. 
 
ACTUAL CONDITIONS vs. SIMULATED:  Environmental tests can be 
simulated or tested under actual conditions.  Actual conditions 
are usually preferred but not always feasible.  The decision as 
to which to use depends on such factors as:  
 
 -  size of the unit, 
 -  nature of the unit, 
 -  frequency of testing, 
 -  complexity of the instrumentation, 
 -  complexity of the test, 
 -  accessibility of the natural environment, 
 -  relative costs, and 
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 -  relative time. 
 
 
11.5 Levels of Tests 
 
     Tests performed as part of the production process can occur 
at various levels.  The levels are: part (P), subassembly (SA), 
assembly (A), subsystem (S) and system (S).  Some form of testing 
is performed at each level based on the capability of the 
processes at each level.  Processes that are less capable require 
more frequent testing.  Hence, efforts should be made to reduce 
process variation so that testing can be reduced if not 
eliminated. 
 
 The types of tests and the test levels that typically occur 
during the production process are as follows: 
 
 TYPE OF TEST:     LEVEL: 
 ----------------------------------------------------------- 
 Receiving Inspection Tests   Part, but could be higher 
 First Article Tests    All  
 Quality Assurance Tests    All  
     Performance Tests     System 
 PRAT       System  
 Operational Tests     System 
 Packaging Tests    System 
 Life Tests      System 
  
 
 
11.6  Procured Units
 
     Units that are purchased can be tested at the seller's plant 
or they can be tested as part of the buyer's Receiving Inspection 
operation.  Ideally a relationship needs to be developed between 
the buyer and the seller so that mutual trust, and cooperation 
grow and prosper; and that both parties work continuously to 
reduce process variation.  If this happens both parties will 
benefit.  In addition to trying to reduce process variation, the 
seller may also be controlling the process at the source to 
minimize future inspection.   
 
 
11.7  Types of Tests and the Production Process
 
     The types of tests used as the product flows from the part 
stage to the final assembly or system stage is as follows:  
 
Production Process   Type of Test 
------------------   --------------------- 
Parts:              
  - manufactured   Quality Assurance* 
  - purchased    Receiving Inspection 
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Subassembly    Quality Assurance 
 
Assembly     Quality Assurance 
 
Subsystem     Quality Assurance 
 
System     PRAT 
 
* For Quality Assurance tests, various ways can be used to 
inspect the process and/or the product including: dimensional 
checks, go/no-go tests, lab tests, and visual inspections.  
Control charts can be used at any level of testing. 
 
 
11.8  Quality Assurance Tests
 
 Quality Assurance (QA) tests are conducted to ensure that 
specifications are met during the production process.  The tests 
can be conducted by production operators or QA personnel. 
 
 The tests can be discrete or variable and require the 
following types of decisions in preparation for the tests: 
 
 -  purpose of the test, 
 -  characteristics to be tested, 
 -  definition of a defective and a defect, 
 -  individual to perform the test, 
 
 -  definition of a lot, 
 -  sample size, 
 -  acceptability criteria, 
 -  sampling risks, 
 -  frequency of testing, 
 -  inspection points, 
 -  inspection level, 
 
 -  procedure to follow if the test is not passed, 
 -  procedure for disposing of rejected items, 
 
 -  inspection equipment required to perform tests, 
 -  calibration procedure for inspection equipment, 
 
 -  use of control charts, 
 -  process capability determination, 
 
 -  type of records to keep, 
 -  function that will maintain the records, 
 
 -  level where ESS is applied 
 
 The purpose of this checklist is to help organize the role 
of testing during the stages of the production process.  Ideally 
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these decisions are documented and made part of a written test 
procedure.  
 
 
11.9.  Testing Program
 
     The tests conducted during the production process are 
actually only a part of the overall testing program which also 
includes development testing, a corrective action plan, 
environmental stress screening (ESS), a calibration program, data 
collection and record keeping, and related training. 
 
 
11.10.  Test Management
 
     In managing the testing program it is better if one 
organization is responsible for the entire program rather than 
have the responsibilities divided between several functions.  
However, it will be crucial that there be no communication 
barriers between the parts of the organization involved in 
testing, including the activities during development and vendor 
operations. 
 
 
11.11.  Test Planning
 
     It is also important that the entire testing program be 
planned and designed before any testing is performed.  Test plans 
have to be developed, operators trained, equipment calibrated, 
instructions written, manuals and forms developed, and everyone 
who is involved needs to be educated in what is expected of them. 
 
 
11.12.  Testing Procedure for RQT and PRAT - Exponential Distr.
 
 A Reliability Qualification Test (RQT) and a Production 
Reliability Acceptance Test (PRAT) are similar tests.  The RQT is 
conducted at the end of the Development Phase to evaluate the 
status of the equipment.  If the development process has been 
successful the equipment should have a high probability of 
passing the RQT, which would imply that the equipment meets the 
specification.   
 
 A PRAT is conducted on a periodic basis to demonstrate that 
each production lot meets the same specification.  Hence, it is 
possible that the same test plan could be used for RQT and PRAT; 
but there could be a logical reason not to use the same test 
plan.  In either case the mechanics and decisions to be made are 
essentially the same except for the definition of a failure. 
 
 To conduct RQT and PRAT tests decisions must be made in the 
following areas: (RADC) 
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 1.  Identify the purpose and scope of the test: 
  - overall test objectives 
  - description of test to be performed 
  - list of reference documents 
  
 2.  Describe the test facilities. 
 
 3.  Describe the test requirements: 
  - ESS (cycles, temperature change rate) 
  - test length (test time or number of failures) 
  - number of test units (with or without replacement) 
  - accept and reject criteria 
  - test plan (test time, number of allowable failures) 
  - government furnished equipment (GFE) 
 
 4.  Develop a schedule for the test. 
 
 5.  Identify the test conditions (profile): 
  - thermal cycle 
  - vibration survey 
  - on/off schedule 
  - preventive maintenance considerations 
  - duty cycle 
 
 6.  Identify who will monitor the test. 
 
 7.  List the organizations/individuals who will participate. 
 
 8.  Develop a definition of failure: 
  - design defects 
  - manufacturing defects 
  - physical or functional degradation below specs 
  - intermittent or transient failures 
  - failures of limited life parts which occur before    
              specified life of the part 
  - failure which cannot be attributed to a specific     
              cause 
  - failure of built in test (BIT) 
  - non-relevant failures: 
   - improper installation or handling 
   - external instrumentation or monitoring equipment 
   - overstressed beyond spec limits due to a test  
    facility fault 
   - procedural errors introduced by the technicians 
   - failures induced by repair actions 
   - secondary failures which are a direct result of 
                      a failure of another part within the system 
 
 9.  List the ground rules for the test. 
  - classification of failures 
  - pattern failures 
  - malfunctions observed during troubleshooting/repair 
  - test time accumulator 
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  - failure causes (system or part: design and/or        
              quality) 
  - action taken following failed tests 
 
    10.  Describe test logs: 
  - equipment data sheets 
  - narrative record of required test events 
  - failure summary record 
  - failure report 
 
 
11.13.  Developing an Exponential Test Plan  (Item #3 above)
 
 An exponential test plan consists of a test time and an 
acceptance criteria.  The test plan is determined by four 
factors, the upper test MTBF, the lower test MTBF, the producer's 
risk, and the consumer's risk.   
  
PRODUCER'S RISK AND Θo: The producers risk, (alpha, α), is the 
chance of rejecting systems with MTBFs at the upper test level of 
the MTBF (theta-zero, Θo); the chance of accepting systems at the 
upper test MTBF is 1 - α.  Alpha is usually .10 or 10%. 
 
 For example, if Θo is 1000 hours and the system MTBF is also 
1000 hours, the chance the equipment will pass the test is 1 - α. 
 If α is .10 then the chance of passing the test is .90 or 90%. 
 
CONSUMERS RISK AND Θ1:  The consumers risk, (beta, β) is the risk 
of accepting systems with MTBFs at the lower test level of the 
MTBF, (theta-one, Θ1).  Beta is also usually .10.  Beta can be 
determined from the specification if the specification is written 
with a confidence statement. [Beta = 1.0 - Confidence in the 
spec]. 
 
 For example, the specification, "must demonstrate 94% 
reliability with 90 % confidence," implies that beta is .10 or 
10%, because β = (1.0 - Confidence) = (1.0 - .9). 
 
 Let us now suppose that the system MTBF is 300 hours, that  
Θ1 = 300 hours and β = .10, then there is a 10% chance that the 
equipment will pass the test.  Therefore to have high chance of 
passing the test, the MTBF for the system being tested must be 
increased. 
 
 Summary of symbols: 
 
 α = the chance of rejecting a system whose MTBF is Θo

     1-α = the chance of accepting a system whose MTBF is Θo

 
 β = the chance of accepting a system whose MTBF is Θ1 and is 
  found by subtracting the confidence in the spec from   
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            1.0 
 Θ = possible MTBFs that the system could have 
 Pa = probability of acceptance. 
 
 The four factors, Θo, Θ1, α, and β are usually specified in 
some manner.  The lower test MTBF and β can be found in the 
equipment specification; the upper test MTBF and α, if not in the 
spec, may be identified by the test plan to be used for the test. 
 
 On the other hand, what if you are the one who has to 
specify α and the upper test MTBF, how do you do it?  The choice 
of the upper MTBF depends on four things: (See Example 2.) 
 
 -  the scheduled time available for testing,  
 -  the number of units available for testing,  
 -  the chance of accepting the MTBF that has been  
            achieved in the growth process, and 
 -  the producer's risk. 
 
 
SPECIFIED MTBF:  In reliability testing, Mil-HDBK-781 defines the 
specified MTBF as the lower test MTBF, or minimum acceptable 
MTBF.  This means that a system that is designed to meet the spec 
will have a low chance of passing the test, (or a low chance of 
acceptance).  Therefore, for a system to pass a Mil Std 781 test, 
the system must be designed to an MTBF higher than the specified 
MTBF. 
   
DISCRIMINATION RATIO (DR):  The discrimination ratio is the ratio 
of Θo to Θ1 and is found by dividing Θo by Θ1, that is,  
 
   DR  =   Θo/Θ1.                            (11.1) 
 
 A discrimination ratio close to 1.0 (say between 1.05 and 
1.2) implies that Θo and Θ1 are relatively close to each other; in 
this situation the total test time will be a large number.   
 
 On the other hand, if the ratio of Θo to Θ1 is about 3.0, the 
total test time will be relatively small.  Hence, in designing a 
test plan it is important to pay close attention to the value of 
the discrimination ratio. 
 
 It is not unusual to have  DR in the range of 2.0 to 3.0, 
but the choice of a  DR depends on other factors, such as time 
available for testing, cost of testing, the number of units 
available for testing, and the probability of passing the test 
that is desired. 
 
DEVELOPING A TEST PLAN WHEN ΘO, Θ1, α, and β ARE KNOWN: 
 
 To develop a test plan the following steps are recommended: 
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 1.  Determine values for α, β, Θo, and Θ1. 
 
 2.  Compute the  DR, where  DR  =   Θo/Θ1. 
 
 3.  Using the table below find the appropriate column for α 
and β. 
 
 4.  Proceed down that column until you come to the  DR 
computed in step 2.  Note: If the exact  DR is not available, you 
may pick the closest  DR in the table, or the first  DR in the 
table that is less than the calculated  DR.  By taking a smaller 
 DR from the table you are increasing total test time, thereby 
reducing the sampling risk. 
 
 5.  In this row read the "Total test time (Multiples of Θ1)" 
and the acceptance number, C.  Multiply the test time multiplier 
by Θ1 to get the total test time. 
 
 Fixed Length Test Plans, extracted from Figure 18 (10 
Percent Consumer’s Risk (β) Test Plans) on page 236 of MIL-HDBK-
781A, are as shown in the table below: 
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β = .10 

DRs for α =  
C (# of 
Failures 
Allowed) 

Total Test 
time 

(Multiples 
of Θ1)

.05 .10 .20 .30 

0 2.30 44.88 21.85 10.32 6.46 
1 3.89 10.95 7.31 4.72 3.54 
2 5.32 6.51 4.83 3.47 2.78 
3 6.68 4.89 3.83 2.91 2.42 
4 7.99 4.06 3.29 2.59 2.20 
5 9.27 3.55 2.94 2.38 2.05 
6 10.53 3.21 2.70 2.22 1.95 
7 11.77 2.96 2.53 2.11 1.86 
8 12.99 2.77 2.39 2.02 1.80 
9 14.21 2.62 2.28 1.95 1.75 
10 15.41 2.50 2.19 1.89 1.70 
11 16.60 2.40 2.12 1.84 1.66 
12 17.78 2.31 2.06 1.79 1.63 
13 18.96 2.24 2.00 1.76 1.60 
14 20.13 2.18 1.95 1.72 1.58 
15 21.29 2.12 1.91 1.69 1.56 
16 22.45 2.07 1.87 1.67 1.54 
17 23.61 2.03 1.84 1.64 1.52 
18 24.76 1.99 1.81 1.62 1.50 
19 25.90 1.95 1.78 1.60 1.49 

 
 
 6.  The test plan is:  Put "n" units on test; run the test 
until the total test time (from step 5) has been accumulated; if 
the total number of failures is equal to or less than the 
acceptance number (from step 4), the units being tested have 
passed the test. 
 
Example 1:  A specification calls for an MTBF of 100 hours* to be 
demonstrated with 90% confidence with an upper test MTBF of 300 
hours and a producer's risk of 5%.  What test plan could be used? 
 
 1.  Θo = 300 hours and α = .05 
   
     Θ1 = 100 hours and β = .10 
 
 2.  DR = 300/100 = 3.0 
 
 3.  Find the column for  α = .05  and  β = .10 
 
 4.  The closest  DR is 2.96 
 
 5.  The test time multiplier is 11.77 and the acceptance 
number is 7.  Total test time is: 
  11.77 x 100 hours = 1177 hours 
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 6.  Conduct the test until 1177 hours have been accumulated; 
if 7 or fewer failures occur the equipment is accepted. 
 
*Note: If the specification is given as a reliability, it is 
necessary to convert the reliability to an MTBF using the 
following equation: 
 
 MTBF = -(mission time)/ln(Reliability)  (11.2) 
 
 
Developing A Test Plan When Only Θ1 and β Are Known And Testing 
Time Is Critical: 
 
 To find a test plan when Θ1, and β are known and the test 
time is critical it is necessary to pick a value for α and then 
either assume a value for Θo and proceed as described above, or 
pick a  DR and multiply it by Θ1 to find Θo, since: 
 
  Θo  =  Θ1 x  DR                               (11.3) 
 
 This method has application when the “Total Test time 
(Multiples of Θ1))”, i.e., the multiplier, is being used to select 
a test plan.  When test time is critical it is sometimes easier 
to find a test plan by first selecting the test time that is 
feasible and converting that test time to a “Total Test time 
(Multiples of Θ1))” multiplier.  Then the upper test MTBF, Θo, is 
found by multiplying the  DR (from the row selected) by Θ1 as 
illustrated in equation 11.3. 
 
EXAMPLE 2.  Suppose 10 units are available for testing (with 
replacement), that there are twelve days to do the test (at 
twenty four hours a day), and a Θ1 of 200 hours. 
 
   The total time available for testing is 2880 hours, i.e.,  
(10 units x 12 days x 24 hours a day). Note:  You may not need 
all these hours for testing but the test cannot exceed  2880 
hours. 
 
 To find the calculated test time multiplier, divide the 
total time available by the lower test MTBF (Θ1), i.e., 
 
 Calculated test time multiplier = 2880/200  =  14.4  
 
  The closest multiplier in the table for β = .10 is 14.21, and 
for α = .10 the  DR = 2.28, therefore, the test plan is: 
 
  α = .10,  β = .10,   
  Θ1 = 200 
  Θo = 2.28 x 200 hours = 456 hours and, 
  total test time = 14.21 x 200  =  2842 hours 
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  acceptance number = 9 
 
Note:  The equipment in this example must have an MTBF of at 
least 456 hours from the growth program to have at least a (1 - 
α)%, (in this case, 90%) chance of passing the test. 
 
STOP ON A TIME OR A FAILURE: In developing a test plan decisions 
must be made on whether the test is stopped on a time or a 
failure.  The Mil-HDBK-781A tables are designed for stopping on a 
time. However, other tables are available in which the test can 
be stopped on a failure.  The advantage in stopping on a time is 
that the exact length of the test is known before the test begins 
which is not the case in stopping on a failure. 
 
TEST WITH OR WITHOUT REPLACEMENT: Tests can also be run "with" 
or "without replacement."  It is usually more efficient to run 
the test "with replacement" because the test hours accumulated 
for each calendar hour will be greater than they would be if 
testing were "without replacement."  However, "with replacement," 
implies that corrective maintenance can be performed, or spare 
test units are available to replace failed test units. 
 
 It should also be noted that it is permissible to replace 
failed units with new units at any time during the test only if 
the failure distribution is constant as it is in the exponential. 
 
 
11.14  Operating Characteristic (OC) Curve 
 
 The OC curve is a graphical illustration of the test plan.  
It shows the probability of passing a test (or probability of 
acceptance, Pa,) for any MTBF.  See Figure 1. 
 
 The OC curve is useful in illustrating the probability of 
passing a test for a given MTBF.  This is done by entering the 
MTBF (horizontal) scale with an MTBF.  Go straight up to the OC 
curve and then go directly to the Pa scale to read the 
probability.  At Θ1 the probability should be around β; at Θo the 
probability should be around 1 - α. 
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Figure 1. OC Curve for a Test Plan 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Constructing An OC Curve: 
 
 Constructing an OC curve makes use of the Poisson table and 
the Mil-HDBK-781 test plan data.  The steps are as follows: 
 
 1.  Define the test plan: 
  Θo = _____,  Θ1 = _____, 
  Total Test Time = ____,  
  the acceptance number = ____ 
 
 2.  Set up a table so that you end up with five points on 
the OC curve.  The first point is Θ1 and the last point is Θo, and 
the three points in-between are about equally spaced between the 
end points. 
 
 
  Possible    Total Test     Expected #     Prob. of 
    MTBF           Time      of failures    Acceptance 
  ----------------------------------------------------- 
    Θ1

    Θi

    Θi 

    Θi

    Θo

  ----------------------------------------------------- 
 
 3.  Divide the total test time by each possible MTBF to get 
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  the expected number of failures; this is "m" for a 
  Poisson distribution. 
 
 4.  Using the "m" from step 3, and the acceptance number 
from test plan, find Pa from the cum. Poisson table. 
 
 5.  Plot the curve, Pa vs. MTBF. 
 
Example 3.:  An α = .10 and β = .10 test plan with a  DR of 2.00 
(Θ1 = 200, and Θo = 400) has a test time multiplier of 18.96, a 
total test time of 3792 (18.96 x 200) and an acceptance number of 
13.  The OC curve calculations are as follows:   
 
  Possible    Total Test     Expected #     Prob. of 
    MTBF         Time        of failures    Acceptance 
            Θi                           (m)        for c = 13 
  ----------------------------------------------------- 
   200   3792   18.96  .0998 
   250           3792           15.17          .35 
   300           3792       12.64          .61 
   350           3792           10.83          .80 
   400           3792            9.48          .899 
  ---------------------------------------------------- 
 
 Plotting Pa vs. MTBF results in the following graph:     
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Figure 2. OC Curve for Example 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11.15.  Effects of Changing • and •
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 Alpha and beta are OC factors that anchor the curve on the 
vertical scale.  Changing alpha and/or beta affects the position 
of the OC curve. 
 
 If alpha is increased the curve drops, this results in a 
decrease in the probability of acceptance for MTBFs greater than 
the lower test MTBF.  Conversely, a decrease in alpha will cause 
the OC curve to rise for MTBFs greater than the lower test MTBF. 
 The changes in the curve are related to the total test time; a 
smaller alpha results in a larger test time and a larger alpha 
results in a smaller test time. 
 
 If beta is made larger the OC curve rises for MTBFs less 
than the upper test MTBF, and the test time decreases; if beta is 
made smaller the OC curve drops for MTBFs less than the upper 
test MTBF and the test time increases. 
 
 For individuals involved in the selection of a test plan it 
is useful to know how the selection of alpha and beta affects the 
probability of acceptance and the total test time. 
 
 
11.16.  System MTBF and Upper Test MTBF
 
 Another factor related to the derivation of a test plan is 
the relationship between the MTBF of the system and the upper 
test MTBF, Θo.  It is desirable to have a high chance of passing 
both RQT and PRAT tests.  To achieve a high chance of passing 
these tests the MTBF of the system should be at least equal to 
Θo.  The MTBF of the system is the MTBF that results from the 
Reliability Development Growth Test (or TAAF). The symbol for 
that MTBF is MF. 
 
 The two MTBFs, MF and Θo, could be exactly the same if Θo is 
chosen first and the MF is grown to that same value.  However, If 
MF is chosen first it is unlikely that the test plan table has a 
 DR that is exactly the same as what was calculated.  If this 
happens, make sure MF is larger than Θo so that the probability of 
acceptance is at least as large as 1 - α. 
 
 
11.17  Relationship to Growth Testing
 
 To find the probability of acceptance for the MTBF that was 
achieved by the growth test program, MF, enter the OC curve scale 
with MF and read the Pa from the probability scale. 
 
EXAMPLE 4:   
 
 Using the data in the previous example, suppose that the MF 
achieved by the growth test program is 350 hours, what is the Pa? 



 
 Enter the MTBF scale in Figure 3 at 350 hours, go up to the 
curve and read the Pa on the probability scale.  It should be 
just below .90 since 350 hours is less than 400 hours.  See 
Figure 3 below. 
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Figure 3. OC Curve for Example 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 What if MF is 450 hours, what is Pa? 
 
 Enter the MTBF scale at 450 and find the Pa; the probability 
of acceptance should be higher than .90 since 450 is larger than 
400.  See Figure 3. 
 
 
11.18.  MTBF from Spec to PRAT
 
 At different stages of the development and production 
process the MTBF has different meanings and as a result different 
values. 
 
STAGE 1.  SPECIFIED MTBF:  The first MTBF encountered is in the 
equipment specification; it is a minimum MTBF that must be 
achieved to satisfy the customer of the product to be delivered. 
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STAGE 2.  PREDICTED MTBF:  Next comes an MTBF that is arrived at 
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through the prediction process.  The predicted MTBF must be equal 
to or greater than the specified MTBF.  If a confidence statement 
is part of the reliability specification the predicted MTBF may 
have to be about two times larger (or more) than the specified 
MTBF, otherwise it is not likely the equipment will pass the RQT. 
 
STAGE 3.  GROWTH TEST MTBF (MF):  The predicted MTBF is the input 
to the reliability growth model. and MF is the targeted output of 
the growth process. 
 
STAGE 4.  RQT TEST Pa:  MF is the MTBF that is input to the OC 
Curve.  It is used to determine the probability of acceptance for 
RQT. 
 
STAGE 5.  PRAT TEST MTBF:  For the PRAT test, MF, must be 
adjusted to reflect the effectiveness of ESS on the system MTBF. 
 The PRAT test MF is calculated by dividing MF by the ESS 
effectiveness factor. 
 
 
11.19.  Sample Size
 
 The sample size for exponential testing can theoretically be 
as small as one or be the entire population, but for practical 
purposes the entire population would not be used for testing 
unless it is small. 
 
 The sample size determination should be an economic decision 
and be based on waiting time cost (while test is in progress), 
the cost of test fixtures, the time available for testing, the 
cost of the unit being tested (if more are built just to run the 
test), and other factors (e.g., restrictions on sample size). 
 
 For example, if 10 units are to be tested for the total test 
time of 3792 hours (Example 3) then each unit would run for 379.2 
hours.  This answer is found by dividing the total test time by 
the number of units on test: 
 
 Test time per unit = total test time/sample size (11.4) 
 
 Test time per unit = 3792 hours/10  =  379.2 hours 
 
 If the sample size were 100, then 
 
 Test time per unit = 3792/100  =  37.92 hours. 
 
 
11.20.  Selecting the Sample
 
 In selecting the sample it is important that each unit 
produced have an equal chance of being selected.  This can be 
accomplished by selecting the sample from a completed lot, or 
assigning random numbers to each production unit and then 
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selecting numbers from a random number table to determine which 
production units to select. 
 
 Sampling could also be done by dividing the lot into equal 
subgroups and then selecting the same number of units from each 
subgroup.  For example, if 100 units are produced each month and 
a sample of 20 is desired, the 100 units could be divided into 
four groups of 25, then 5 could be taken at random from each of 
these subgroups to get the 20 sample units. 
 
 In conducting the test, it is not critical that the number 
of hours be exactly the same on each test unit.  On the other 
hand it is not wise to run a few hours on several units and a 
large number of hours on a few units.  In Mil-HDBK-781 there is a 
requirement that the smallest amount of time on any one unit 
cannot be less than half the average of the time on all the 
units.  The purpose of this restriction is to prevent someone 
from putting several units on for a short time just to pass the 
test. 
 
 
11.21.  ESS
 
 In testing of electronic products it is important that the 
products be screened before starting the test.  The screen is 
called ESS, Electronic Stress Screening. This procedure is 
discussed in detail in a later chapter. 
 
 
11.22.  Relationship between Testing and Confidence
 
 The “Total Test time (Multiples of Θ1)” from the table shown 
earlier is half of the Chi-square value for 2(c + 1) degrees of 
freedom on the Chi-square table.  For example, for β = .10 and c 
= 13 the multiplier is 18.96; the Chi-square value for 28 degrees 
of freedom and 90% confidence is 37.9 which when divided by two 
is 18.95. 
 
 Another point of interest is that the lower confidence 
limit, for a test in which the number of failures that occurs is 
the same as the acceptance number, is the lower test MTBF. 
 
For example, suppose that the test plan for a system is as 
follows: 
 
  Θo = 300 and α = .05 
  Θ1 = 100 and β = .10 
  DR = 300/100 = 3.0 
  The test time multiplier is 11.77 and the acceptance number 
is 7.  Total test time is: 
  11.77 x 100 hours = 1177 hours 
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 If the test is run what would the lower confidence limit be 
for Θ if 7 failures occurred? 
 
 The Chi-square value for 16 degrees of freedom (df) and 90% 
confidence is 23.5.  Note: df = 2(c + 1) and c = 7.  Using the  
Chi-square model,  
 
 lower confidence limit = 2(1177)/23.5  =  100+ 
 
which is Θ1.  This shows that a test plan could be developed from 
the Chi-square table by dividing the Chi-square value by 2 and 
multiplying by the lower test MTBF.  For example, divide 23.5 by 
2 and you get 11.75; now multiply by 100 to get 1175 hours which 
is basically what we started with; the acceptance number is the 
degrees of freedom minus 2 and divided by 2.  That is, 23.5 has 
16 degrees of freedom, so 7 [i.e., (16 - 2)/2 = 7] is the 
acceptance number; it is the same as what we started with 
earlier. 
 

Table: Chi-Square Critical Values 

The areas given across the top are the areas to the right of the critical value.  

df 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005
1 --- --- 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
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20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321
90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169

 
 

11.23  Binomial Testing   
 
 For discrete measurements binomial tests apply.  Since the 
calculations for binomial probabilities, confidence limits and 
sample sizes for reliability testing have already been presented 
in Section Four, they will not be repeated in this section. 
 
BINOMIAL NOMOGRAPH  the Nomograph of the Cumulative Binomial 
Distribution can be used to find a test plan.  The procedure is 
as follows: 
 
 1.  Define 1 - β, and the specified Reliability. 
 
 2.  Define α and the upper test Reliability. 
 
 3.  On the Binomial Cumulative Nomograph locate the 
confidence level scale and the 1 - β point on this scale. 
 
 4.  On the opposite side of the nomograph locate the 
reliability scale and the specified reliability on this scale. 
 
 5.  Draw a straight line between the points on these scales, 
 and call this line #1. 
  



 6.  On the Binomial Cumulative Nomograph locate the 
confidence scale and the α point on this scale. 
 
 7.  On the opposite side of the nomograph locate the 
reliability scale and the upper test reliability on this scale. 
 
 8.  Draw a straight line between the points on these scales, 
 and call this line #2. 
 
 9.  Where line #1 intersects line #2 read the number of 
failures and the sample size. 
 
 
EXAMPLE 5  A system has a test requirement that a 95% reliability 
be demonstrated with 90% confidence; and an upper test 
reliability of .99 for which α = .10.  What Binomial test plan 
could be used? 
 
 When line #1 is drawn to connect the two points, 90% 
confidence and 95% reliability, the line crosses several test 
plans. For example, at: 
 
  zero failures, about 45 trials would be required, 
  one failure, about 78 trials would be required, 
  two failures, about 107 trials would be required, etc. 
 
 Any of these test plans could be chosen and would meet the 
confidence and reliability requirement if only β and the lower 
test reliability were given.  Where the test plans differ is at 
the other end of the OC curve, the [Po, (1-α)] coordinates.  For 
example, at: 
 
 Zero failures, α = .1  and n = 45, Po = .0022 because: 

0022.)1()1)(1)(1()1()0(9.1 4500
0 =⇒−=−=−===− − pppppCP nn

nα  
 One failure, α = .1  and n = 78,   Po = .0068 because: 

0068.78;)1()1()1()0()1or  0(9.1 11 =⇒=−+−=+===− − pnpnppPPP nnα  
Note: 90.9009.3136.5873.)1()0( ≅=+=+ PP  
 Two failures, α = .1  and n = 107, Po = .0102. 
 
 As you can see, a small number of trials results in a 
smaller Po for a given α.  Therefore, if Po and α are not 
specified, any one of these test plans would be acceptable, but 
if Po and α are specified then that information must be used in 
designing a test plan.  
 
 In this example, α is defined as .10 for an upper test 
reliability of .99.  When the line #2 is drawn it crosses line #1 
at r = 2 (failures) and at about 110 trials (n).  Hence, it 
appears that the test plan is to conduct 110 trials; if two or 
less failures occur, the equipment has passed the test.  See 
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Figure 4. 
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Figure A-6.  Nomograph of the Cumulative Binomial Distribution 

Adapted from Figure 1, “Graphical Determination of Single-Sample 
Attribute Plans for Individual Small Lots, “by Shaul P. Ladany, 
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Journal of Quality Technology, July 1971 (by permission of the 
American Society for Quality Control, Inc.) 
 
 
Figure 4  Using the Nomograph to Find a Test Plan. 
 
TABLE METHOD:  To find a Binomial test plan using the table for 
Fixed Length Test Plans for the Exponential Distribution the 
following procedure can be used: 
 
 1.  Define α, β, Po and P1. 
 
  α and β are as defined earlier,  
  P1 = 1- R1 = 1 - specified reliability, (this is the 
reliability that corresponds to β), and 
  Po = 1- Ro = 1-the reliability that corresponds to 1-α. 
 
 2.  Compute the discrimination ratio (DR) as P1/Po(not as 

accurate as 
0

1

lnR
Rln

=DR ). 

 
 3.  Using the Exponential test table, find the α and β 
column; go down that column until you come to a  DR that is equal 
to or less than the  DR computed in step 2.  If the  DR in the 
table is less than what was computed, the table  DR becomes the 
new  DR and will be used in a later step. 
 
 4.  In the same row of the new  DR, write down the 
acceptance number (c) and the nP1 value (this will be found in 
Column 2 “Total Test time (Multiples of Θ1))”. 
 
 5.  Divide nP1 by P1, this gives you the number of trials (n) 
to use for the test. 
 
 6.  Find the new Po, by dividing P1 by the new  DR. 
Note: A new Po is required because it is not possible to get the 
exact DR desired for the original Po. 
 
 7.  Test plan is: 
 
  Conduct n trials 
  If c or fewer failures occur, the test has been passed. 
 
 Check: To check the plan, compute (n x new Po), and find 
this value in the "m" or "np" column of the Poisson table. Find 
the probability of acceptance in the "c" column.  The probability 
should be about (1-α). 
 
 Now multiply (n x P1) and find this value in the "m" column 
of the Cumulative Poisson table.  Find the probability of 
acceptance in the "c" column.  The probability should be close to 
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β. 
   
EXAMPLE 6.  A Binomial test plan is desired to demonstrate a 
reliability of .95 with 90% confidence; the chance of accepting a 
reliability of .99 is also set at 90%. 
 
1.  α = .10 and β = .10. Note: β always goes with the smaller 
reliability, in this case .95 reliability; and α goes with the 
.99 reliability. 
  
 Po = 1.00 - .99 = .01 
 P1 = 1.00 - .95 = .05 
 
2. DR = .05/.01 = 5 
 
3.  From the Exponential test table for α = β = .10, the first DR 
that is equal to or less than 5, is 4.83.  This is the new  DR.  
 
4.  nP1 = 5.32 (Column 2), and c = 2.  
 
 At this point, we have:  
 
   new  DR = 4.83 
   c = 2 
   nP1 = 5.32 
 
5.  The number of trials, n, is found as follows: 
 
 n =   nP1/P1  =  5.32/.05  =  106.4  =  107 
 
6.  New Po = P1/new  DR  =  .05/4.83  =   .0104 
 
7.  The test plan is: conduct 107 trials, if 2 or less failures 
 occur the test has been passed. 
 
 Check:   
 
 nPo=(107)(.0104)=1.107; from the Poisson for c=2, Pa=.90. 
 nP1 = (107)(.05) = 5.35; from Poisson for c = 2, Pa = .0985. 
 
 Note: Pa is less than .10 because "n" was rounded up to 107; 
 if 106.4 could be used as "n" the Pa would be .1006. 
 
 
CONSTRUCTING AN OC CURVE FOR A BINOMIAL TEST: 
 
 Constructing an OC curve makes use of the Poisson table, the 
number of trials, the acceptance number, and an upper and lower 
test unreliability.  The steps are as follows: 
 
 1. Define the test plan: 
 



  Lower test unreliability (P1) =  ______ 
 
  Upper test unreliability (new Po) =  ______ 
 
  Number of trials =  ______ 
 
  Acceptance number = ______ 
 
 
 2.  Set up a table so that you end up with five points on 
the OC curve.  The first point is the lower test reliability P1 
and the last point is the upper test reliability Po; the three 
points in-between are about equally spaced between the end 
points. 
   
  Possible     Number        Expected #     Prob. of 
  Unreliab.   of Trials     of failures    Acceptance 
  ----------------------------------------------------- 
    P1

    Pi

    Pi 

    Pi

    Po

  ----------------------------------------------------- 
 
 3.  Multiply the unreliability by the number of trials to   
           get the expected number of failures, this is "m" for a 
  Poisson distribution. 
 
 4.  Using the "m" from step 3, and the acceptance number 
from the test plan, find the Pa from the Poisson table. 
 
 5.  Plot the curve, Pa vs. Reliability. 
 
EXAMPLE 7.  It was desired to have a binomial test plan in which 
α=β=.10 and in which R1=.95 and Ro = .99. Applying the Cumulative 
Binomial Nomograph, the following binomial test plan was derived: 
allow 2 failures in 107 trials. Construct the corresponding OC 
curve using the Poisson distribution. 

01.99.11 and 05.95.11 0011 =−=−===−=−= RPRP   Using the same format 
presented above, we find: 
  Possible     Number        Expected #     Prob. of 
  Unreliab.   of Trials     of failures    Acceptance 
  ----------------------------------------------------- 
    .05  107   5.35   .0985 
    .04  107   4.28   .20 
    .03  107   3.21   .38 
    .02  107   2.14   .66 
    .01  107   1.11   .90 
  ----------------------------------------------------- 
  
 The approximate OC curve for this test plan is illustrated 
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below.  Note: When applying the Poisson distribution to construct 
an OC curve for a binomial test plan, it is usually not possible 
to find the exact Pa desired, e.g. we found .0985, rather than 
.10.  
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 Figure 5.  OC Curve for a binomial test plan based on 
Poisson Distribution calculations. 
 
 
11.24 USING EXPONENTIAL TEST PLAN TABLES TO DEVELOP BINOMIAL TEST 
PLANS
 
PROBLEM: 
 - Cumulative binomial nomograph limited to R ≤ 0.99 
 - Cumulative binomial tables not readily available; 
  require iterative solution 
 
 SOLUTION: 

 
 - Both Exponential and Binomial distributions assume 
constant failure rate or constant probability of success/failure. 
 
 - Can use fixed-length, exponential test plan process to 
determine binomial test plans 
 
 
THEORY 
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 Fixed-length exponential test plans based on DR = Θ0/Θ1

 
 Need method to relate P(success) to Θs and DR 

 
      -t/Θ 
 P(success) = R(t) = e 
 
 Ln [R(t)] = -t/Θ                               (11.5) 
 
 Θ = -t/ln [R(t)]                         (11.6) 
 
 Therefore: Θ0 = -t/ln [R0(t)], and 
 
    Θ1 = -t/ln [R1(t)] 
 
 where R0 and R1 are the desired and minimum acceptable 
values.  Substituting: 
 
   -t/ln [R ]   ln [R ] 0 1

  DR = ─────────────── = ──────────────      (11.7) 
   -t/ln [R1]   ln [R0] 
 
 
EXAMPLE 8 
 
 - Minimum reliability requirement = R1 = 0.85 
 - Desired reliability = R0 = 0.92 
 - ß risk = 10% 
 - α risk = 20% 
 - Question: What is an appropriate test plan - number of 
trials (n) and maximum number of mission failures (C)? 
 
 
  Ln [R ]  ln 0.85  -0.1625 1

 DR = ─────────── = ───────── = ───────── = 1.95 
  Ln [R0]  ln 0.92  -0.08338 
 
 From the (exponential) fixed-length test plan table given 
earlier in this chapter: 
  - Max number of failures = 9 
  - multiplier = 14.21 
 
 Total test time = 14.21 x Θ1

            Total test time 
 Note that number of trials/tests, n = ───────────────────── 
         Mission length (t) 
      14.21 x Θ1

 Therefore, n = ───────────── 
     t 
 
 But, Θ1 = -t/ln[R1], therefore: 
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   14.21{-t/ln[R ]}  -14.21 1

  n = ──────────────────── = ──────────── 
     t   ln[R1] 
 
   - 14.21  -14.21 
    = ─────────── = ────────── = 87.4 trials 
   ln 0.85  -0.1625 
 
 As a check, a similar answer can be derived from the 

nomograph. 
 
 
EXAMPLE 2 
 
 - Minimum requirement = R1 = 0.995 (not on nomograph) 
 - Desired reliability = R0(t) = 0.997 
 - ß risk = 10% 
 - α risk = 20% 
 - Question: What is an appropriate test plan? 
 
  Ln [R ]  ln 0.995  -0.00501 1

 DR = ─────────── = ───────── = ───────── = 1.67 
  Ln [R0]  ln 0.997  -0.003005 
 
 Appropriate exponential test plan: 
  - Max number of failures = 16 
  - Test time multiplier = 22.45 
 
    - 22.45  - 22.45 
  n = ─────────── = ───────────── = 4479 trials 
   ln [R1]  - 0.00501 
 
 In this case, the answer can NOT be derived from the 

nomograph. 
 
 
11.25  Summary
 
 This chapter explained several concepts that are part of a 
testing program.  Some aspects of a test program are not 
discussed in detail because emphasis is placed on the development 
of the RQT and/or PRAT test plans for both exponential and 
binomial data. 
 
 From this section the reader should know what is involved in 
developing an exponential test plan, a binomial test plan and 
know what decisions need to be made in setting up a Quality 
Assurance test plan for production units.  For the QA test plan 
the form on the following page may be helpful. 
 
 



 
 11 - 34 

11.26.  Equations 
 
 DR  =   Θo/Θ1.                                         (11.1) 
 
 MTBF =  -(mission time)/ln(Reliability)           (11.2) 
 
 Θo  =  Θ1 x DR                                         (11.3) 
 
 Test time per unit = total test time/sample size     (11.4) 
 
 Ln [R(t)] = -t/Θ                                      (11.5) 
 
 Θ = -t/ln [R(t)]                                  (11.6) 
 
  -t/ln [R ]   ln [R ] 0 1

 DR = ─────────────── = ──────────────                (11.7) 
  -t/ln [R1]   ln [R0] 
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Chapter 13 
 

Normal Distribution 
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13.10 Summary 13-11 
13.11 Equations 13-13 
 
Symbols, Terms And Equations Used In This Section: 
 
 μ = population mean for a Normal distribution 
 σ = population standard deviation for a Normal distribution 
 LPL = lower process limit 
 UPL = upper process limit 
 PL = process limits 
 USL = Upper specification limit 
 LSL = Lower specification limit 
 Z  = Standard normal deviate 

x  = observation from a population or sample 
 
standard deviation =  a measure of variation 
standard error of the mean  =  a measure of the variation for a distribution of averages 
population = the entire output of a process for a given set of parameters 
sample = a portion or subset of a population 
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13.1.  Introduction
 
     The Normal distribution is a useful distribution because it has many applications in 
manufacturing and administrative processes.  It is also used to approximate other 
distributions under certain conditions. 
 
     In this chapter the emphasis will be on the following: 
 
 1.  Properties of the Normal. 
 2.  Calculating the mean and standard deviation. 
 3.  Areas under the Normal curve. 
 4.  Distribution of sample means. 
 5.  Estimating sample sizes. 
 
13.2. Properties of the Normal Distribution
 
 The Normal distribution is a continuous distribution and has the following 
properties (see Figure 13.1): 
 
 1.  It is defined by its mean, μ, and standard deviation, σ. 
 2.  It is symmetrical around the mean. 
 3.  The area from minus infinity to plus infinity is one. 
 4.  It has an increasing failure rate. 
 5.  Areas around the mean are: 
 
  μ +/- 1σ include 68.26% of the total area, 
  μ +/- 2σ include 95.44% of the total area, 
  μ +/- 3σ include 99.72% of the total area. 
 

68.26 percent

95.46 percent

99.73 percent

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.1 The Normal Curve. 

 13 - 2  



 

13.3.  Computations
 
POPULATION MEAN:  The mean is one of three measures of central tendency for a 
distribution,. Such as the Normal.  The others are: the median which is the point that 
divides a Normal distribution exactly in half; and the mode which is the observation with 
the largest frequency.  In this course our main concern will be with the mean. 
 
 To compute the mean for the population the following equation is used: 
 

N
x i∑=μ   (13.1) 

 
where,  

population  theofmean   the=μ  
nobservatio ith""  theof  value thexi =  
nsobservatio  theall of sum  thexi =∑  

population  theof size N =  
 
POPULATION STANDARD DEVIATION: The standard deviation is a measure of 
variation for the Normal distribution.  Other measures of variation include the variance, 
which is the square of the standard deviation; and the range.  The range will be used in 
the chapter on Statistical Process Control. 
 
 Variation is a measure of how close the observations are clustered around the 
mean.  When the variation is large the observations are spread out over a relatively wide 
range around the mean; when the variation is small the observations are more closely 
bunched around the mean. 
 
 A small amount of variation is more desirable than a large amount for several 
reasons.  When the variation is small, you get: better predictions, better process capability 
numbers, lower cost on the Taguchi Loss Function, less sampling error, better accuracy.  
In reliability, small variation is also desirable because it results in higher reliability and 
longer life for a system. 
 
 The standard deviation is computed by: 
 
 1- finding the deviation of each observation from the mean,  

2- squaring the deviation, then  
 3- summing the squared deviations, 
 4- dividing by the population size, N, and then 
 5- taking the square root of the result. 
 
In equation form, it looks like this: 
 
 σ  =  [Σ(xi - μ)2/N]½   (13.2) 
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 where, 
 xi - μ     = the deviation of the "ith" observation from the mean, 
 (xi - μ)2  =  the square of a deviation, 
 Σ(xi - μ)2 =  the sum of all the squared deviations, 
 N  = the number of observations in the population, or population size. 
 
EXAMPLE 13.1:  Consider a population of 4 members with the values: 5,8,2, and 9. 
 
These four observations have a mean of 6; i.e.,  5 + 8 + 2 + 9  = 24, which, when divided 
by 4, results in a mean of 6, i.e., μ = 6 
 
 Suppose that now we subtract the mean from each observation and then square 
those differences. we get: 
 

xi xi - μ (xi - μ)2

5 5 - 6 = -1 (-1)2 = 1 
8 8 - 6 =  2 (2)2  = 4 
2 2 - 6 = -4 (-4)2 =16 
9 9 - 6 =  3 (3)2  = 9 

Σxi = 24 Σ(xi - μ) = 0 Σ(xi - μ)2 = 30 
 
and a standard deviation of: 
 

==σ
4

30 7.25.7 =  

 
 It is important to note that the sum of the deviations around the mean is zero, i.e., 
Σ(xi - μ) = 0, because this is a property of the mean.  There is only one number for which 
the sum of the deviations around it is zero, and that number is the mean. 
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13.4.  Sample Statistics
 
SAMPLE MEAN:  It is very unusual to be able to work with an entire population.  In 
most situations the only data available is a sample drawn from the population.  
Consequently, the sample mean and sample standard deviation are used as estimates of 
the population mean and standard deviation.  The sample mean and sample standard 
deviation are called statistics.   
             
 The equation for the sample mean is as follows:   
 

n
x

 x i∑=     (13.3) 

 
 where, 

sample  theofmean   thex =  
 n = the sample size, 
 xi  = the "ith"  observation in the sample, and 
 Σxi = the sum of the sample observations. 
 
 
SAMPLE STANDARD DEVIATION:  The sample standard deviation looks similar to 
the population standard deviation with two exceptions: n, the sample size, is used in place 
of the population size, N; and the divisor, which is called the degrees of freedom, is "n-
1."  Every time one statistic is used to calculate another statistic a degree of freedom is 
lost.  The "1" that is subtracted from "n" represents the one degree of freedom that is lost 
when the sample mean is used to calculate a sample standard deviation.   
 
     The equation for the sample standard deviation has been algebraically simplified to 
the following: 
 

[ ] [ ]

1n
n
x

x
  s

2
2

−

−
=

∑∑
 (13.4) 

 
EXAMPLE 13.2:  A sample of five parts selected from a population has the following 
dimensions: 10, 8, 11, 9, 10 
         _ 
         X  =  [Σx]/5 = (10 + 8 + 11 + 9 + 10)/5 = 48/5 = 9.6 
 
To find s using equation 13.4 we begin by computing: 
 
 Σ(xi

2)  =  102 + 82 + 112 + 92 + 102  =  100 + 64 + 121 + 81 + 100  = 466 
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     X and s are estimates μ and σ.  Are they good estimates?  That depends on how you 
use the estimate, the sample size, n, and how the samples are drawn from the population.  
A sample size of 100 drawn in an unbiased manner should result in a good estimate. 
 
13.5  Area Under the Normal Curve
 
     One of the calculations that we will be making is to compute areas under the Normal 
curve for quality and reliability problems.  The model used is derived from the density 
function which is defined as follows: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

σ
μ−

−
πσ

=
2x

2
1exp

2
1 )x(f   (13.5) 

 
     This expression could be used to calculate areas under the Normal curve but the 
Normal Table has simplified the process.  The Table makes use of the portion of the 
density function that contains the variable "x," every other term is a constant.  The 
portion containing "x" has been defined as "Z," and is called the standard normal deviate: 
 

Z  =  (x - μ)/σ  (13.6)  and 
 
Z  =  (x - x )/s   (13.7) 

 
     By making this transformation from "x" to "Z" the scale of the Normal distribution is 
being changed from "x" to "Z" which can be used for any type of measurement.  See 
Figure 13.2 
 
 

 
 
 
 
 
 

x scale: μ-3σ   μ-2σ   μ-1σ    μ    μ+1σ    μ+2σ    μ+3σ 
                Z scale:   -3        -2       -1       0      +1         +2         +3 

 
Figure 13.2  Normal Distribution with x-scale and Z-scale. 

 
     From this scale it should be apparent that "Z" represents the number of standard 
deviations that an observation is from the mean, so that when Z is calculated the answer 

 13 - 6  



 

is in "standard deviations from the mean."  The Normal table in the Appendix provides 
areas from minus infinity to +Z. 
 
     To use the Normal table, select a value for which you want to know the probability of 
being above or below that value.  For example, I might ask, "What is the probability that 
a system will wear out before 1000 hours of use?"  The "1000 hours" point is converted 
to  "Z" using equation 13.7, and the probability of wear out before 1000 hours is found in 
the Normal table. Our table provides areas from minus infinity to the value of interest. 
 
A portion of the table is presented: 
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 
0.1 .5398 .5438 .5478 .5517       
1.0 .8413 .8438 .8461        
 
To find Z in the table, the row and column headings are used beginning with the row 
heading. For example, 
 
Z = 0.05 is in the 0.0 row and the .05 column, and the value, .5199 is the area from minus 
infinity to Z = .05; 
  
Z = .11 is in the 0.1 row and the .01 column, and the value .5438 is the area from minus 
infinity to z = .11. It is possible to find areas above or below Z simply by subtracting the 
area below Z from 1.0000.  For example, if the area to the right of  Z = .11 is what you 
want, just subtract .5438 from 1.0000, i.e., 1.0000 - .5438 = .4562. 
 
Z = 1.02 is in the 1.0 row and the .02 column, and the value .8461 is the area from minus 
infinity to Z = 1.02.  The area to the right of  Z = 1.02 is .1539. 
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EXAMPLE 13.3:  A process has a mean of 104 and a standard deviation of 4.   
 
a. What per cent of the process is below 106? 
 
                106 - 104 
         Z = ------------- =  2/4  =  .50 
                       4 
 
 From the Z table the area is .6915, so 69.15% of the process is less than 106. 
 
b.  What per cent of the process is above 106? 
 The area below 106 is .6915, thus, the area above 106 is .3085, which is found by 
subtracting .6915 from 1.0000.  See Figure 13.3 
 

                                    x          92     96    100  104    108    112    116 
             Z         -3      -2     -1       0      +1      +2      +3 

Figure 13.3 Area Under a Normal Curve for Example 13.3 
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EXAMPLE 13.5: For the same data in the previous example, a mean of 104 and a 
standard deviation of 4, what is the probability that an observation drawn at random will 
be greater than 97? 
 
 
 
 This statement can be written as: 
 
 P(x > 97)  =  ? 
 
 Using the same model as above,  
 
                   97 - 104 
          Z =  ------------    =  -7/4  =  -1.75 
                        4                               
 
 Since Z is negative we know Z is in the left tail; the area could be on either side, 
but the question in the problem is asking for the area above 97. 
 
 Now, if Z were positive, i.e., if Z = + 1.75, the table value would provide us with 
the area below Z = 1.75; since Z is negative, the table is providing us with the area above 
-1.75 or above 97 and that area is .9599.  This interpretation can be made because the 
curve is symmetrical around the mean.  The area below a positive Z is the same as the 
area above the negative Z. 
 
 If the area to the left of 97 were desired, the area would be found by subtracting 
.9599 from 1.0000 or .0401. 
 
 In general the following rules can be established: 
 
     Z      Area Desired     Rule 
     ---------------------------------------------------------- 
     +      Below Z            The area in the table is the answer.  
     +      Above Z            Subtract the area in table from 1.000. 
     -       Below Z            Subtract the area in table from 1.000. 
     -       Above Z            The area in the table is the answer. 
 
 
SOLVING FOR X:  In some situations the area of the curve, or probability, is known and 
the value of "x" must be found.  In that case, the Z equation is solved for "x" instead of 
"Z."  Solving the Equation 13.7 for "x" results in the following model: 
                           
         x  =  (Z)(s)  +  X                          (13.8) 
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13.6  Process Limits
 
     A term that will often be used is "process limits;"  they correspond to plus and minus 
three standard deviations, that is, 
 
 UPL = Upper process limit = Mean + 3 standard deviations 
 LPL = Lower process limit = Mean - 3 standard deviations 
 
and they can be written as: 
 
 Process Limits  =  Mean +/- 3 standard deviations   (13.9) 
 
13.7  Specification Limits
 
     Specification (spec) limits will also be used in some applications.  These limits that 
are defined by the customer, engineering, or other functions within an organization.  The 
specs could come from an engineering drawing, a contract, a requirement, etc. and are 
identified by the symbols USL and LSL, where, 
 
 USL = Upper specification level 
 
 LSL = Lower specification level 
 
     In the ideal situation the process limits should fall inside the specification limits. 
 
 
13.8.  Distribution of Sample Means
 
     Another Normal distribution that has application in reliability and quality is the 
distribution of sample means.  This distribution will contain some differences from the 
population distribution that was discussed in the first part of this section because it is a 
distribution of sample means.   
 
     The population distribution consists of all the individual observations, and the 
distribution of sample means consists of all the sample means that are possible from the 
population. 
 
 
STANDARD ERROR OF THE MEAN: The distribution of sample means has the same 
average as the population but the standard deviation is different.  The standard deviation 
of sample averages is called the standard error of the mean. 
                                        

         Standard Error of the Mean =  
n
σ   (13.10) 
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EXAMPLE 13.5  To illustrate the relationship between the two distributions, consider a 
population with a mean of 100 and a standard deviation of 4 and how the means of 
samples of size 25 would be distributed.   
 
 The mean of population distribution is 100, 
 The standard deviation of the population is 4, 
 The process limits are 100 +/- 3(4) = 88 to 112, 
 
 The mean of the distribution of sample means is 100, 
 The standard error of the mean is 4/ 25  = .8 
 The limits on the distribution of sample means are  
  100 +/- (3)(.8) = 97.6 to 102.4. 

See Figure 13.4 for an illustration of this example: 

 
                                              88         97.6          100          102.4          112 
 

Figure 13.4  Illustration of Example 13.4 
 
     The limits for the distribution of sample averages represent the range within which 
99.72% of the sample averages should fall if the population does not change.  Or, to say it 
in another way, we would expect 99.72% of all the sample averages from samples of 25 
to be between 97.6 and 102.4; or be within 2.4 of the true mean. 
 
     We have just shown how to go from a population to a distribution of sample means.  
Can we go in the reverse direction?  That is, if we know how the sample averages are 
distributed can we estimate the population mean?  The answer is “yes” and all we need to 
know is the accuracy and the confidence desired, and an estimate of the standard 
deviation of the population. 
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13.9  Estimating Sample Size
 
     The distribution of sample averages can be used to estimate sample sizes required for 
testing purposes.  The factors needed to make the estimate are: 
 
1.  The accuracy desired (same units as x) 
2.  An estimate of the population standard deviation, (this must come from past history, 
or from a sample drawn for the purpose of making such an estimate) 
3.  Confidence level (commonly used values are 90% and 95%) 
 
     The method used starts with the following relationship: 
 
  Accuracy  =  (Zconf) x (Standard Error)             (13.11) 
 
where, 
 Standard Error = Standard Deviation/ n  
 
 where Z is found in the Normal table for the appropriate 
multiplier from the Normal table, 
 
   Zconf = 3 corresponds to 99.72% confidence 
   Zconf = 2 corresponds to 95.44% confidence  
   Zconf = 1.96 corresponds to 95% confidence 
   Zconf = 1.645 corresponds to 90% confidence 
 
Example: For a confidence of 95%, look for .9750; it should be in the .06 column and the 
1.90 row, therefore,  Z = 1.96.   
Note: .9750 is .5000 plus half of .9500. 
 
     Let us suppose that we want to take a sample from a process, and want to have 90% 
confidence that the sample mean is within 2 hours of the population mean.  Let us also 
suppose that we know from past history that the population standard deviation is about 5 
hours.  Summarizing these facts, we have: 
 
 standard deviation = 5 hours 
 accuracy = 2 hours 
 confidence = 90% (Z = 1.645) 
 
     Using equation 13.11, 
 
 2 hours  =  (1.645) x (5 hours)/ n  
 
 n  = (.8225 x 5)/2  =  4.1125 
 
 n  =  16.9  ≅  17. 
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13.10.  Summary
 
      This has been a short treatise of the Normal distribution but should be sufficient for 
the applications in this course. 
 
   
13.11.  Equations
 
  μ +/- 1σ includes 68.26% of the total area, 
  μ +/- 2σ includes 95.44% of the total area, 
  μ +/- 3σ includes 99.72% of the total area. 
 

N
x i∑=μ       (13.1) 

 
σ  =  [Σ(xi - μ)2/N]½     (13.2) 
 
_ 
X  =  Σxi/n      (13.3) 
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Z  =  (x - μ)/σ      (13.6) 
                     
Z  =  (x - x )/s       (13.7) 
 
x  =  (Z)(s)  +  X                            (13.8) 
 
Process Limits  =  Mean +/- 3 standard deviations  (13.9) 
 

Standard Error of the Mean =  
n
σ    (13.10) 

 
Accuracy  =  (Zconf) x (Standard Error)  (13.11) 
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