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ABSTRACT
This article presents an approach for performing an analysis of a program’s cost risk. 
The approach is referred to as the scenario-based method (SBM). This method pro-
vides program managers and decision-makers an assessment of the amount of cost 
reserve needed to protect a program from cost overruns due to risk. The approach 
can be applied without the use of advanced statistical concepts or Monte Carlo simu-
lations, yet is flexible in that confidence measures for various possible program costs 
can be derived. 

INTRODUCTION
This article* introduces an analytical, non-Monte-Carlo-simulation approach, for quantify-
ing a program’s cost risks and deriving recommended levels of cost reserve. The approach 
is called the Scenario-Based Method (SBM). This method emphasizes the development 
of written scenarios as the basis for deriving and defending a program’s cost and cost 
reserve recommendations. 

The method presented in this article grew from a question posed by a government 
agency. The question was Can a valid cost risk analysis (that is traceable and defensible) 
be conducted with minimal (to no) reliance on Monte Carlo simulation or other statistical 
methods? The question was motivated by the agency’s unsatisfactory experiences in 
developing and implementing Monte Carlo simulations to derive “risk-adjusted” costs of 
future systems. In response to the question posed by the agency, the method reflects an 
alternative approach whereby a technically valid measure of cost risk can be derived with-
out Monte Carlo simulations or advanced statistical methods. A “statistically-light” analyti-
cal augmentation to this method is also presented that enables one to assess probabilities 
that a program’s cost will (or will not) be exceeded. 

TERMS AND DEFINITIONS
Throughout this article certain technical terms and distinctions between them are used. 
This section presents these terms and explains the subtleties between their meanings. 
First, we’ll briefly discuss the concept of a subjective probability. This will be followed by 
a discussion of risk versus uncertainty and the differences between them. This sets the 
stage for introducing the SBM. 

Subjective Probability Assessments (Garvey 2000): Probability theory is a 
well-established formalism for quantifying uncertainty. Its application to real-world sys-
tems engineering and cost analysis problems often involves the use of subjective prob-
abilities. Subjective probabilities are those assigned to events on the basis of personal 
judgment. They are measures of a person’s degree-of-belief an event will occur. 

Subjective probabilities are associated with one-time, non-repeatable, events whose 
probabilities cannot be objectively determined from a sample space of outcomes devel-
oped by repeated trials or experimentation. Subjective probabilities must be consistent 
with the axioms of probability (Garvey 2000). For instance, if an engineer assigns a 
probability of 0.70 to the event “the number of gates for the new processor chip will not 
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exceed 12,000” then it must follow the chip will exceed 12,000 gates with probability 0.30. 
Subjective probabilities are conditional on the state of the person’s knowledge, which may 
change with time. 

To be credible, subjective probabilities should be assigned to events by only subject 
matter experts, persons with significant experience with events similar to the one under 
consideration. Instead of assigning a single subjective probability to an event, subject ex-
perts often find it easier to describe a mathematical function that depicts a distribution of 
probabilities. Such a distribution is sometimes called a subjective probability distribution. 
Subjective probability distributions are governed by the same mathematical properties as 
probability distributions associated with discrete or continuous random variables. 

Subjective probability distributions are most common in cost uncertainty analysis, par-
ticularly on the input side of the process. Because of their nature, subjective probability 
distributions can be thought of as “belief functions.” They describe a subject expert’s be-
lief in the distribution of probabilities for an event under consideration. Probability theory 
provides the mathematical formalism with which we operate (add, subtract, multiply, and 
divide) on these belief functions. 

Risk versus Uncertainty (Garvey 2000): There is an important distinction be-
tween the terms risk and uncertainty. Risk is the chance of loss or injury. In a situation 
that includes favorable and unfavorable events, risk is the probability an unfavorable 
event occurs. Uncertainty is the indefiniteness about the outcome of a situation. We ana-
lyze uncertainty for the purpose of measuring risk. 

In systems engineering the analysis might focus on measuring the risk of failing to 
achieve performance objectives, overrunning the budgeted cost, or delivering the system 
too late to meet user needs. Conducting the analysis involves varying degrees of subjec-
tivity. This includes defining the events of concern, as well as specifying their subjective 
probabilities. 

Given this, it is fair to ask whether it’s meaningful to apply rigorous procedures to such 
analyses. In a speech before the 1955 Operations Research Society of America meeting, 
Charles Hitch addressed this question. He stated (Hitch 1965):

“Systems analyses provide a framework which permits the judgment of experts in 
many fields to be combined to yield results that transcend any individual judgment. 
The systems analyst [cost analyst] may have to be content with better rather than 
optimal solutions; or with devising and costing sensible methods of hedging; or 
merely with discovering critical sensitivities. We tend to be worse, in an absolute 
sense, in applying analysis or scientific method to broad context problems; but 
unaided intuition in such problems is also much worse in the absolute sense. Let’s 
not deprive ourselves of any useful tools, however short of perfection they may 
fail.”

Given the above, it is worth a brief review of what we mean by cost uncertainty analysis 
and cost risk analysis. Cost uncertainty analysis is a process of quantifying the cost im-
pacts of uncertainties associated with a system’s technical definition and cost estimation 
methodologies. Cost risk analysis is a process of quantifying the cost impacts of risks as-
sociated with a system’s technical definition and cost estimation methodologies. Cost risk 
is a measure of the chance that, due to unfavorable events, the planned or budgeted cost 
of a project will be exceeded. 

Why conduct the analysis? There are many answers to this question; one answer 
is to produce a defensible assessment of the cost needed such that this amount has an 
acceptable probability of not being exceeded.
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Figure 1. A non-statistical scenario-based method.

THE SCENARIO-BASED METHOD (SBM): 
A NON-STATISTICAL IMPLEMENTATION

Given the “what” and “why” of cost risk analysis, a minimum acceptable method is one that 
operates on specified scenarios that, if they occurred, would result in costs higher than the 
level planned or budgeted. These scenarios should not represent worst-case extremes; 
rather, they should reflect a set of possible events of reasonable concern, to a program 
manager or decision-maker, to warrant sufficient budget to guard against should any or all 
of them occur. For purposes of this discussion, we’ll call this approach the “Scenario-Based 
Method” (SBM) for cost risk analysis. 

The SBM derives from what could be called “sensitivity analysis”, but with one differ-
ence. Instead of arbitrarily varying one or more variables to measure the sensitivity (or 
change) in cost, the SBM involves specifying a well-defined set of technical and program-
matic events that collectively affect a number of cost-related variables and associated 
work breakdown structure (WBS) elements in a way that increase cost beyond what was 
planned. Defining these events, describing the extent one event affects other events (and/
or other aspects of the program), and integrating this information into a coherent risk “story” 
about what the program faces is what is meant by the term “scenario”. 

The process of defining scenarios is a best practice. It builds the supportive rationale 
and provides a traceable and defensible analytical basis behind a “derived” measure of 
cost risk, which is often lacking in traditional simulation approaches. Visibility, traceability, 
defensibility, and the cost impacts of specifically identified risk events are principal strengths 
of the SBM. Figure 1 illustrates the process flow behind the non-statistical SBM. 

The first step (in Figure 1) is input to the process. It is the program’s point estimate cost 
(PE). For purposes of this article, the point estimate cost is defined as the cost that does 
not include an allowance for cost reserve. It is the sum of the cost element costs summed 
across the program’s work breakdown structure without adjustments for uncertainty. Of-
ten, the point estimate cost is developed from the program’s cost analysis requirements 
description (CARD). 

Next, is the effort to define a protect scenario (PS). The key to a “good PS” is one that 
identifies, not an extreme worst-case, but a scenario that captures the impacts of the major 
known risks to the program – those events the program manager or decision-maker must 
monitor and guard the costs of the program against. Thus, the PS is not arbitrary. Nor is it 
stationary. It should reflect the above, as well as provide a possible program cost that, in 
the opinion of the engineering and analysis team, has an acceptable chance of not being 
exceeded. 
In practice, it is envisioned that management will converge on a PS after a series of dis-
cussions, refinements, and iterations from the initially defined scenario. This part of the 
process aims to ensure all parties reach a consensus understanding of the risks the pro-
gram faces and how they are best represented by the PS and then subsequently closely 
monitored. 

Once the PS has been defined and agreed to its cost is then determined. The next step 
(in Figure 1) is computing the amount of cost reserve (CR) dollars needed to protect the 
program’s cost against identified risk. This step of the process defines cost reserve as the 
difference between the PS cost and the point estimate cost (PE). Shown in Figure 1, there 
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may be additional refinements to the cost estimated for the PS based on management 
reviews and considerations. This too may be an iterative process until the reasonable-
ness of the magnitude of this figure is accepted by the management team.  It is important 
to emphasize the need to monitor, refine, and update the PE and the PS as the program 
matures in its acquisition or because of change in near-term or strategic needs.

A Valid Cost Risk Analysis
This approach, though simple in appearance, is a valid cost risk analysis; why? The 
process of defining scenarios is a deliberate exercise in identifying the risks the program 
faces. Without the need to define scenarios, cost risk analyses can be superficial with its 
basis not well-defined or carefully thought through.

Scenario definition encourages a discourse on program risks that otherwise might not 
occur, particularly in the early phases. The SBM requires risks to be made fully visible, 
traceable, and “costable” to program managers and decision-makers. This facilitates insti-
tuting formal risk management and monitoring practices across the program’s life-cycle. 
Defining, iterating, and converging on a PS is valuable for understanding the “elasticity” 
in program costs and identifying those sets of risks (e.g., weight growth, software size 
increases, schedule slippages, etc.) the program must guard its costs against. 

The non-statistical SBM described above has limits. Mentioned earlier, cost risk, by 
definition, is a measure of the chance that, due to unfavorable events, the planned or 
budgeted cost of a program will be exceeded. A non-statistical SBM does not produce 
mathematically derived confidence measures. The chance the cost of the PS, or the cost 
of any defined scenario, will not be exceeded is not explicitly computed. One might ask 
whether such a measure is necessary if the protect scenario has been well-developed 
and reflects the best understanding of the program’s risks, as they can be reasonably 
anticipated at the given time.

Nonetheless, it is possible to modify the non-statistical SBM to produce confidence 
measures while maintaining its simplicity and analytical features. The following describes 
one way this might be done.

THE SCENARIO-BASED METHOD (SBM):  
A STATISTICAL IMPLEMENTATION

This section presents a statistical, non-Monte Carlo simulation, implementation of the 
SBM. It is an optional augmentation to the methodology discussed above. It can be imple-
mented with a spreadsheet, a few algebraic equations, and a few technical assumptions 
and guidance. 

There are many reasons to implement a statistical SBM. These include (1) a way to 
develop confidence measures; specifically, confidence measures on the dollars to plan so 
the program’s cost has an acceptable chance of not being exceeded (2) a means by which 
management can examine changes in confidence measures, as a function of how much 
reserve to “buy” to ensure program success from a cost control perspective and (3) a way 
to assess where costs of scenarios of interest different from the PS fall on the probability 
distribution of the program’s total cost. 

Approach & Assumptions
Figure 2 illustrates the basic approach involved in implementing a statistical SBM. Observe 
that parts of the approach include the same steps required in the non-statistical SBM. So, 
the statistical SBM is really an augmentation to the non-statistical SBM. The following ex-
plains the approach, discusses key technical assumptions, and highlights selected steps 
with computational examples. 

Mentioned above, the statistical SBM follows a set of steps similar to the non-statisti-
cal SBM. In Figure 2, the top three activities are essentially the same as described in the 
non-statistical SBM with the following exception. Two statistical inputs are needed. They 
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Figure 2. A statistical scenario-based method.

Figure 3. The coefficient of dispersion.

x�($M)

)xCost(P �
1

0

��

�
�1�

)D1( ��)D1( ��

�1�

�
�

�D

)D1( ���

)D1( ���

x�($M)

)xCost(P �
1

0

��

�
�1�

)D1( ��)D1( ��

�1�

�
�

�D

)D1( ���

)D1( ���

are the probability PE�  that the point estimate cost (PE) will not be exceeded and the 
coefficient of dispersion (CoD).  

Point Estimate Probability
For the statistical SBM, we need the probability

 PEPE )xCost(P ���  ( 1 )

where Cost is the true, but unknown, total cost of the program and xPE is the program’s 
PE. Here, the probability PE�  is a judgmental or subjective probability. It is assessed by the 
engineering and analysis team. In practice, PE�  often falls in the interval 50.010.0 PE �� � . 

Coefficient of Dispersion (CoD)
What is the CoD? It is a statistical measure defined as the ratio of distribution’s standard 
deviation to its mean. It is one way to look at the variability of a distribution at one standard 
deviation around its mean. The general form of the CoD is given by equation 2. 

 �
�

�D  ( 2 )

Figure 3 illustrates this statistical measure. 
Here, the CoD statistic is a judgmental value but one guided by Air Force Cost Analysis 

Agency (AFCAA) and industry experiences with programs in various phases of the ac-
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quisition process. As will be discussed later in this article, a sensitivity analysis should be 
conducted on both statistical inputs, namely PE�  and CoD, to assess where changes in 
assumed values affect cost risk and estimated levels of reserve funds. 

The next two steps along the top of the process flow in Figure 2 follow the procedures 
described in the non-statistical SBM. Notice these two steps do not use the statistical 
measures PE�  and CoD. It is not until you reach the last steps of this process that these 
measures come into play. 

As will be shown in the forthcoming examples, the distribution function of the program’s 
total cost can be derived from just the three values identified on the far-left side of the pro-
cess flow in Figure 2. Specifically, with just the point estimate cost PE, PE� , and CoD the 
underlying distribution function of the program’s total cost can be determined. With this, 
other possible program costs, such as the PS cost, can be mapped onto the function. From 
this, the confidence level of the PS and its implied cost reserve (CR) can be seen. 

This completes an overview description of the statistical SBM process. The following 
presents two computational examples that illustrate how the statistical SBM works. 

STATISTICAL SBM: 
ASSUMED UNDERLYING NORMAL

Here, we assume the underlying probability distribution of Cost is normally distributed and 
the point (xPE , PE� ) falls along this normal. If we’re given just the point estimate PE, PE� , 
and CoD then the mean and standard deviation of Cost are given by the following equations. 

 
1Dz
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where D is the CoD, xPE  is the program’s point estimate cost, zPE  is the value such that 
PEPE )zZ(P ���  and Z is the standard normal random variable, namely Z ~ N(0,1).

The value of zPE can be calculated in Microsoft Excel by using built-in functions that 
generate numerical values associated with the standard normal distribution function. In 
particular, the Excel built-in function NORMSDIST gives the value of � , given z, and the 
inverse function NORMSINV gives z, given � . 

Once � and �  are computed, the entire distribution function of the normal can be 
specified, along with the probability that Cost may take any particular outcome, such as 
the PS cost. The following illustrates how these equations work. 

Example 1
Suppose the distribution function for Cost is normal. Suppose the point estimate cost of 
the program is 100 ($M) and that cost was assessed to fall at the 25th percentile. Suppose 
the type and phase of the program is such that 30 percent variability (CoD = 0.30) in cost 
around the mean has been historically seen. Suppose the PS was defined and determined 
to cost 145 ($M). Given all this,

a) Compute � and � . 
b) Plot the distribution function of Cost.
c) Determine the confidence level of the PS cost and its associated CR. 
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Figure 4. A plot of the normal distribution: Mean 125.37, sigma 37.61.
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Solution
a) From the information given and from equation 3 and equation 4 we have, 
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 We need to know the numerical value of zPE to complete these computations. 
From the information given, we know P(Z < zPE) = 0.25. Since Z is assumed 
to be a standard normal random variable, we can use a built-in Excel function 
to find zPE. Therefore, 

zPE = NORMSINV(0.25) = –0.6745,
 so that
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b) A plot of the distribution function of Cost is shown in Figure 4. This is a plot of a 
normal distribution with mean 125.37 ($M) and standard deviation 37.61 ($M). 

c) To determine the confidence level of the PS we need to find PS� such that

 PSPS )145xCost(P ����
 Finding PS�  is equivalent to solving

 PSPS xz �� ��
 for zPS. From the above, we can write the expression
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 Since xPS = 145, � = 125.37, and �  = 37.61, it follows that
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 We then calculate PS� = NORMSDIST(0.522) = 0.70. Therefore, the PS cost 
of 145 ($M) falls at approximately the 70th percentile of the distribution, thereby 
suggesting a CR in the amount of 45 ($M). Figure 5 illustrates these results 
graphically. This concludes example 1. 
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Figure 5. Example 1 illustrated: Assumed normal distribution.
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The following provides formulas for the mean and standard deviation of Cost if the 
underlying distribution of possible program costs is represented by a lognormal. The log-
normal is related to the normal in that ln(Cost) is normally distributed instead of Cost itself 
being normally distributed. However, the lognormal is different from the normal distribution 
in the sense that it is skewed towards the positive end of the range instead of being sym-
metric about the mean. The lognormal distribution is always non-negative.

Numerous studies (reported in Garvey 2000) have empirically shown the normal or 
lognormal to be excellent approximations to the overall distribution function of a program’s 
total cost, even in the presence of correlations among cost element costs. The decision 
to use one over the other is a matter of analyst preference and judgment. In practice, it is 
simple enough to execute an analysis using both distributions to examine if there are sig-
nificant differences between them. Then, use judgment to select the distribution that best 
reflects the cost and risk conditions of the program. 

STATISTICAL SBM: 
ASSUMED UNDERLYING LOGNORMAL

Here, we assume the underlying probability distribution of Cost is lognormally distributed 
and the point ( yPE, PE� ) falls along this lognormal. There are two steps involved in com-
puting the mean and standard deviation of Cost. The first is to compute the mean and 
standard deviation of ln(Cost). The second is to invert or translate these values into the 
mean and standard deviation of Cost, so the units are in dollars instead of “log-dollars.” 
The following demonstrates these steps.

The lognormal distribution is the exponentiation of a normal distribution; that is, if X is a nor-
mal random variable with mean P and standard deviation Q, then Y = eX is a lognormal random 
variable with mean �  and standard deviation � . In particular, if yPE is the point estimate on the 
lognormal distribution, then xPE = ln (yPE ) is the equivalent of yPE on the corresponding normal 
distribution. Now, P and Q are related to �  and �  by the following formulas:
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If zPE is as before, namely the point on the standardized normal distribution corresponding 
to the cumulative probability PE� , then
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Figure 6. A Plot of the lognormal distribution: Mean 127. 26, Sigma 38. 18.
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Example 2
Suppose the distribution function for Cost is lognormal. Suppose the point estimate cost 
of the program is yPE = 100 ($M) and this cost was assessed to fall at the 25th percentile. 
Again, suppose the type and phase of the program is such that 30 percent variability in 
cost around the mean has been historically seen. Suppose the PS was defined and deter-
mined to cost 145 ($M). Given this,

a) Compute � and  � . 
b) Plot the distribution function of Cost. 
c) Determine the confidence level of the PS cost and its associated CR. 

Solution
a) From equation 8 and equation 7 it follows that

80318.4))3.0(1ln()6745.0()100ln()D1ln(z)y(nP 22
PEPE �������� �

 and 

 
29356.0))3.0(1ln()D1ln(Q 22 �����

 
 From equation 9 and equation 10, we translate the above mean and standard 

deviation into dollar units; that is,

 )M($26.127ee
2

2
12

2
1 )29356.0(80318.4QP ��� ���  

 )M($18.38)1e(26.1271e
22 )29356.0(Q ����� ��

b) A plot of the distribution function of Cost is shown in figure 6. This is a plot of 
a lognormal distribution with mean 127.26 and standard deviation 38.18. Addi-
tionally, the confidence level of the mean, using the built-in Excel function, is

αµ = NORMSDIST((ln(127. 26) – 4. 80318)/0.29356)) = NORMSDIST(0.14666) = 0.558. 
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Figure 7. Example 2 illustrated: Assumed lognormal distribution.

c) To determine the confidence level of the PS we need to find PS� such that 

 PSPS )145xCost(P ����

 Finding PS�  is equivalent to solving
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 for zps. From the above, we can write the expression
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 It follows that
 

PS�
 
= NORMSDIST(0.5912) = 0.723, using the built-in Excel 

function. Therefore, the PS cost of 145 ($M) falls at approximately the 72nd 
percentile of the distribution, indicating a CR of 45 ($M). Figure 7 shows these 
results graphically. This concludes example 2. 

A Sensitivity Analysis
There are many ways to design and perform a sensitivity analysis on the SBM, particularly 
the statistical SBM. In this mode, one might vary the statistical inputs, namely PE�  and/or 
the CoD. 

From experience, we know  PE�  will often fall in the interval 0.10 < PE�  < 0.50. For this 
article, we set PE�  = 0.25 and the CoD equal to 0.30 to illustrate the statistical aspects of 
the SBM. In practice, these measures will vary for each program — not only as a function 
of the program’s type (e.g., space, C4ISR) but also as a function of its maturity and phase 
in the acquisition timeline. The following shows a sensitivity analysis on the statistical SBM 
with varying levels of the CoD. This is done in the context of example 2.

Figure 8 illustrates how either the confidence level can vary as a function of the CoD or 
how the dollar level can vary as a function of the CoD. Here, the left-most family of lognor-
mal distributions, in Figure 8, shows, for a PS cost of 145 ($M), that the confidence level 
can range from 0.545 to 0.885 depending in the magnitude of the CoD. The right-most 
family of lognormal distributions, in Figure 8, shows for a confidence level of just over 70 
percent the dollars can range from 129 ($M) to 182 ($M), depending on the magnitude of 
the CoD. 

The above analysis is intended to demonstrate the sensitivity of the analysis results to 
wide variations in the CoD. In practice, a program would not experience such wide swings 
in CoD values. However, it is good practice to vary the CoD by some amount around the 
“point” value to see what possible variations in confidence levels or dollars results. 

This analysis was based on the assumption that a program’s cost uncertainty can be 
represented by a lognormal distribution. It is important to note the lognormal is bounded 
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Figure 8. A sensitivity analysis on the coefficient of dispersion:  
Families of lognormal distributions.
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below by zero; hence, the cost associated with that kind of distribution will always be non-
negative. If the cost distribution were assumed to be normal, however, in the sensitivity 
analysis presented here it is possible that the coefficient of dispersion could be so large 
as to drive program costs into the range of negative values (since the normal distribution 
extends infinitely in both the positive and negative directions). As the SBM is tested and a 
record of implementation experiences with the approach is compiled, it may be decided the 
lognormal distribution assumption is the “better” of the two to use as a model. 

As a good practice point a sensitivity analysis should always be conducted, especially 
when implementing the statistical SBM. The analysis can signal where additional refine-
ments to scenarios and the underling analytical assumptions may be needed. This is what 
good analysis is all about. 

SUMMARY
This article presented an approach called the scenario-based method for performing an 
analysis of a program’s cost risk. The SBM provides program managers and decision-
makers a scenario-based and scenario-driven assessment of the amount of cost reserve 
needed to protect a program from cost overruns due to risk. The approach can be applied 
without the use of advanced statistical concepts or Monte Carlo simulations, yet is flex-
ible enough that confidence measures for various possible program costs can be derived, 
should that kind of information be needed. 

Features of this approach include the following:
• It provides an analytic argument for deriving the amount of cost reserve needed 

to guard against well-defined “scenarios”;
• It brings the discussion of “scenarios” and their credibility to the decision-mak-

ers; this is a more meaningful topic to focus on, instead of statistical abstrac-
tions the classical analysis can sometimes introduce;

• The non-statistical version does not require the use of statistical methods to de-
velop a valid measure of cost risk reserve; 

• Percentiles (confidence measures) can be designed into the approach with a 
minimum set of statistical assumptions;

• Percentiles (as well as the mean, median, variance) can be calculated algebra-
ically and executed in near-real time within a simple spreadsheet environment; 
Monte Carlo simulation is not needed;

• It does not require analysts to develop probability distribution functions for the 
uncertain variables in a WBS, which can be time-consuming and hard to justify;

• Correlation is indirectly captured in the analysis by the scenario and by magni-
tude of the CoD applied to the analysis;
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• The approach fully supports traceability and focuses attention on key risk 
events that have the potential to drive costs higher than expected. 

It is important to note the SBM process focuses on developing and documenting sce-
narios that best characterize the risk of an acquisition program. Application experience 
with SBM is needed to learn: (1) how scenarios can be objectively developed and (2) how 
bias, with respect to optimism and advocacy, can be minimized or avoided in scenario 
generation. 

The SBM is a deliberately deliberative and collaborative approach to understanding 
and evaluating a program’s cost risk. Scenarios in SBM represent a program’s “risk story” 
as understood at a specific time in its life-cycle. Time is best spent building these case 
arguments for how a confluence of risk events might drive the program to a particular per-
centile rather than debating what percentile to select (without really knowing what those 
dollars are protecting). This is where the debate and the analysis should center. This is 
how a program manager and decision-maker can rationalize the need for cost reserve 
levels that may initially exceed expectations. It is also a vehicle for identifying, early-on, 
where risk mitigation actions should be implemented to reduce cost risk and the chances 
of program costs growing out of control.
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