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ABSTRACT 
 
A basic step in a cost uncertainty analysis is to define the distribution of every uncertain element 

in the cost model.  Identifying and then defending these distributions is a fundamental challenge.   If 
data is available, the preference is always to perform a statistical analysis to arrive at an objective 
assessment.  Several commercial tools are available for finding the distribution that best describes the 
shape and dispersion of the sample data set, but they are not in agreement..  Are they all correct?  
Have these different methods been subjected to an independent validation and verification (IV&V)?  
Is there a “best method” to derive the “best fit”?  

 
In order to easily analyze hundreds of data sets in a consistent manner and present the results in a 

tailored form, a prototype utility was built in Excel to derive the parameters for the lognormal, 
normal, triangular and beta distribution that best fit a sample dataset.  A variation on Excel’s 
PercentRank function is introduced and forms a key building block of the utility.  Excel’s solver is 
used in the prototype and the motivation to search for an alternative is presented.  The Chi squared 
statistic is used by at least one commercial tool as the metric for optimizing the distribution 
parameters.  We examine it and several others as metric to optimize such as sum of squared error 
(SSE) and standard percent error (SPE).  The pros and cons of each are presented and the rationale for 
the one selected is provided.  The applicability of other “goodness of fit” tests are discussed. 

 
We present the fit results in a compact and thorough format.  Fitted distribution parameters 

compare favorably to commercial tools, and the math is provided for validation.  The Chi squared test 
is used to assess the significance of the fitted distribution.  The associated assumptions, math, and 
weaknesses of this “goodness of fit” test are discussed. 
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Overview

 What is a Distribution Finder?

 Why create one from scratch?
 What about commercial tools?

 Core elements of a Distribution Finder process

 Choosing a Goodness-of-Fit test
 Details of the Chi-squared test

 Recommended fit options and defaults

 Sample results
 Fitted parameters and fitted distribution formulas
 Comparing results to Crystal Ball and @Risk for some datasets

 Conclusions
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What is a Distribution Finder and 

Why do we need one?

 A key step in performing cost uncertainty analysis is to define the 
distribution for every uncertain element in the cost model 
 Identifying and defending uncertainty distributions is a fundamental challenge

 Analysts should have a defendable, repeatable process to find a 
distribution that adequately describes the uncertainty of a cost 
estimating relationship (CER) and/or cost drivers (CER inputs)

 Assuming normal or triangular can be inappropriate – example to 
follow

 A Distribution Finder utility finds the distribution shape and it’s 

parameters to best represent the sample data

4Approved For Public Release
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 A common factor relationship was calculated for 23 similar projects

 A univariate analysis computed the mean, confidence intervals and 
prediction intervals for use in estimating new projects

 However, the assumption that the factors are “Normally” distributed 

is clearly not supported by the histogram

 In this case, beta or lognormal fits the data much better than normal 
and the mode is quite different from the mean
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Why Create a Distribution Finder 

from Scratch?

 Several commercial tools provide for distribution fitting, however:
 All are equally adamant that their method is “the best”, yet all yield 

different answers given the same dataset 
 Sometimes not possible to validate the methods used (if the methods are 

published at all)  
 Customizing their results into a desired format is not trivial
 Analyzing hundreds of data sets in a repeated, consistent manner is 

cumbersome
 Unclear or impossible to enforce economic or physical realities such as: 

Low > 0, Low<= Lowest Sample Point or High => Highest Sample point, 
etc.

 Are we limited to these commercial tools to perform this analysis?

 We were motivated to build a transparent utility within Excel that could 
be easily modified by the user as requirements changed

Approved For Public Release
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Creating a

Distribution Finder
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Key Elements of a 

Distribution Finder Process

 Goal: Fit Lognormal, Normal, Triangular and Beta to the sample data
 Focus is on commonly used distributions.  Others can be added or leave the 

occasional more esoteric distribution fitting to the commercial tools.

 Store selected source data on a single, easy to access spreadsheet
 Include filters to allow the analyst to easily stratify data

 Allow analysts to easily create one or more Analysis sheets to:
 Select filtered (stratified) data for analysis
 Inspect selected data for possible outliers, exclude as appropriate
 Choose plotting options, fit constraints, fit method, basis for goodness-of-

fit measure and histogram bin number
 Render results in both tabular and graphical form
 Report goodness-of-fit test results to identify the significance levels of fits

 Summary Sheet
 Be able to tabulate fit statistics from a variety of Analysis sheets

8Approved For Public Release
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Core Steps on the Analysis Sheet (1/2)

 We considered several distribution fit approaches and settled on the 
following

 Sort sample data in ascending order

 Assign a cumulative percentile 
 Several methods available, we have considered:

 NIST1, Excel, and a “correction for continuity” (CoC) method

 See the next few slides for definitions and comparisons

 Use the sample descriptive statistics to provide a starting point for fit 
parameters

 Assess the difference between the sample and fit using either:
 Sum Squared Error

 Sum Squared Percent Error 
 n = number of data points
 y = a sample data point
 = a fitted point

1. NIST= National Institute of Standards and Technology
9Approved For Public Release
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How to Estimate a Sample Data 

Point’s Cumulative Percentile

10

 Three methods to estimate sample data point percentiles were considered:

 Observations
 Excel reports the lowest point as 0% and highest as 100%.  This is inconsistent with how cost 

estimators tend to view sample data and is a problem when trying to fit lognormal and normal  
 The May, Alan method deals with duplicate data with a “correction for continuity” (CoC)

Approved For Public Release
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Correction For Continuity2 (CoC)

p = percentile
n = number of observations

ObsFreq = number of times a 
specific observation occurs

NumObsBelow = number of 
observations below the value of 
sample point being assessed

1. The NIST and Excel formulas can be found at: NIST/SEMATECH e-Handbook of Statistical Methods, www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm
NIST formulation is available in Excel 2010, see:  http://blogs.msdn.com/excel/archive/2009/09/14/function-consistency-improvements-in-excel-2010.aspx

2. From “Reliability and Information Functions for Percentile Ranks”  Kim May and W. Alan Nicewander, Journal of Educational Measurement, Vol. 31, No. 4 (Winter, 1994), 
pp. 313-325

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm
http://blogs.msdn.com/excel/archive/2009/09/14/function-consistency-improvements-in-excel-2010.aspx
http://blogs.msdn.com/excel/archive/2009/09/14/function-consistency-improvements-in-excel-2010.aspx
http://blogs.msdn.com/excel/archive/2009/09/14/function-consistency-improvements-in-excel-2010.aspx
http://blogs.msdn.com/excel/archive/2009/09/14/function-consistency-improvements-in-excel-2010.aspx
http://blogs.msdn.com/excel/archive/2009/09/14/function-consistency-improvements-in-excel-2010.aspx
http://blogs.msdn.com/excel/archive/2009/09/14/function-consistency-improvements-in-excel-2010.aspx
http://blogs.msdn.com/excel/archive/2009/09/14/function-consistency-improvements-in-excel-2010.aspx
http://blogs.msdn.com/excel/archive/2009/09/14/function-consistency-improvements-in-excel-2010.aspx
http://blogs.msdn.com/excel/archive/2009/09/14/function-consistency-improvements-in-excel-2010.aspx
http://blogs.msdn.com/excel/archive/2009/09/14/function-consistency-improvements-in-excel-2010.aspx
http://blogs.msdn.com/excel/archive/2009/09/14/function-consistency-improvements-in-excel-2010.aspx
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Comparing the Percentile Methods

11

 Observations
 The CoC method evenly splits the difference between NIST and Excel
 All three methods line up in the center of the data
 Biggest differences are at the end points
 Differences diminish as the number of sample points increase (not shown)

Approved For Public Release
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Compare CoC to the 

Excel Percentile Method

12

 Samples were drawn at 
random from a known 
lognormal population

 Data were rounded to cause 
several duplicates to be 
contained in the sample in 
order to illustrate how the 
CoC method differs from 
Excel or NIST:
 Excel and NIST report the 

percentile of the first occurrence 
for all duplicates

 The CoC method averages the 
percentile of the point prior and 
the point after the duplicates, 
which tends to smooth out the 
curve (ie removes “gaps”)

 We use the CoC method. 
How this choice impacts 
results is presented later.

Approved For Public Release
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Core Steps on the Analysis Sheet (2/2)

 Use *Excel Solver to find the fit parameters that minimize SSE or SSPE
 Set optional constraints such as: Low>0, High>HighestSamplePoint
 Select SSE or SSPE as error to be minimized

 SSE is highly influenced by very large sample points (as compared to mean)
 SSPE is highly influenced by fitted points close to zero (divide by zero problem)

 Rank the fits using Standard Error of the Estimate (SEE) or Standard 
Percent Error (SPE)
 Where k = number of estimated parameters in the fit

 Normal, lognormal k = 2
 Triangular k = 3
 Beta k = 4

 This is a preferred method to rank the fits (rather than SSE or SSPE directly) 
because it accounts for the degrees of freedom

 Use a Goodness-of-Fit test to determine the significance level of the fit
 Minimum SSE or SSPE alone does not necessarily mean the fit is meaningful

*Microsoft Excel Solver was developed by Frontline Systems, Inc. and distributed with MS Excel

13
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Choosing a

Goodness-of-Fit Test

 Kolmogorov-Smirnov: 
 The sample CDF is compared to the fitted CDF and the maximum vertical distance 

between them is found.  This generally happens in the middle, making K-S a 
preferred test if you are interested in accuracy at the center of the distributions. 

 Anderson-Darling: 
 Measures total area between the sample and fit CDF and with weightings that can 

focus on the fit in the tails.  A-D is a preferred test if you need accuracy in the tails.

 Both K-S and A-D
 Do not require binning of the data
 Limited in the number of distributions for which a p value can be calculated (i.e. beta, 

triangular and uniform are not addressed)

 Chi-Squared: 
 Compares the sample frequency to the fitted frequency by bin
 The most common test because it is the easiest to calculate and is fast 
 Can be applied to any continuous or discrete distribution
 Weakness:  Relies on “binning” data and that there are no clear guidelines for 

selecting the number and location of the bins

 Conclusion: Pick a consistent way to define bins and use Chi-squared 
14Approved For Public Release
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Chi-Squared Test Details

 Null Hypotheses = Sample data fits the selected distribution

 Bins can be set on equal interval or equal percentile. D'Agostino & 
Stephens1 recommend equiprobable bins have no bias and greater power 
compared to equal interval – we follow this recommendation

 For each bin, calculate the test statistic: 
 (SampleFreq - ExpectedFreq)^2/ExpectedFreq

 Expected frequency is calculated based upon the fitted distribution
 Select bins such that the expected frequency (calculated from the fitted distribution) 

is > 1 even though some texts prefer it to be > 5

 Sum the Chi-Square statistic for each bin and compare to critical value

 Calculate the critical value using CHIINV(SigLvl,df) 
 NIST2 advises that degrees of freedom, df = Bins-k-1 where k is the 

number of parameters estimated

15

1. Goodness-of-Fit Techniques [1986] - D'Agostino & Stephens, pp 69-72
2. NIST/SEMATECH e-Handbook of Statistical Methods, www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm

Approved For Public Release
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Setting Fit Constraints

 Desirable Fit Options (many of which may not be available in commercial tools)

 Force fitted mean and or standard deviation to match the sample
 Limit normal distribution lower bound so that no more than x% of the 

distribution is in the negative region
 Force low of a triangle or beta to greater than or equal to zero
 Force triangle & beta bounds to be at least as low/high as the sample

 Goodness-of-Fit Settings (to perform the Chi^2 test):
 Set the level of significance for the test
 Set the number of histogram bins, choose from:

 Mann-Wald*       (2*ObsCount^2/(NORMSINV(ChiSigLvl))^2)^0.2
 Mann-Wald/2 – recommended by D'Agostino & Stephens as a good compromise
 Sturges’ formula (1+3.3219 * Log n) where n is the number of data points

 Scott’s Choice and Freedman-Diaconis (see en.wikipedia.org/wiki/Histogram)
 Manual – let the user select

* Crystal Ball uses Mann-Wald or Mann-Wald/2
Approved For Public Release
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Running the

Distribution Finder
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Default Settings

 Plot all four curves 

 Set Constraints
 Max 1% of normal < 0 
 Min 0 for Tri and Beta
 Surround Tri and Beta 

 Optimize on SSE
 If sample percentiles are known, 

use the checkbox to minimize on
percentile error rather than on the values

 Our default method estimates percentiles 
so our default is to minimize on values

 For Chi^2 test
 0.05 sig, 
 use Mann-Wald/2 to set bin count

 Set histogram bins for display to 10
(user can adjust without affecting Chi^2 test)

18Approved For Public Release
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Sample Distribution Finder Results

Unitless Sample Lognormal Normal Triangular Beta Sample Ln Nor Tri Beta Tot Curves Num Iterations

Mean 993.54 1,000.00 993.59 997.17 951.78 Control Plots TRUE TRUE TRUE TRUE TRUE 4 Triggers to

StdDev 712.79 750.00 652.13 665.49 839.42 Constrain Mean N/A FALSE FALSE FALSE FALSE 0 insert "| "

CV 0.717 0.750 0.656 0.667 0.882 Constrain Stdev N/A FALSE FALSE FALSE FALSE 0 0

Low 159.72 -43.99 156.52 Force Min=>Zero N/A N/A FALSE FALSE FALSE 0 0

Mode 635.36 512.00 993.59 159.72 951.78 Encapsulate Sample N/A N/A N/A FALSE FALSE 0 0

High 4,007.10 2,875.79 4,007.10 Nor percentile for 0 10

Alpha 0.506 Nor Result @ Sel % -523.49302

Beta 1.943

Data Count 63 % of Curve <= 0: 6.4% 0.3% None

Standard Error of Estimate 0.00 293.43 236.08 221.95 Curve Rank By SEE N/A 1 4 3 2 RankArray

SEE / Mean 0% 30% 24% 23% 0.00046055

Chi^2 Fit test 20 Bins, Sig 0.05 Good (100%) Good (17%) Good (68%) Good (7%) 293.434677

Second and Third Title 236.079474

Filter= NONE: , Fit = SSE on Value 221.953646

Fit Unconstrained

Min Fit Selection 1 Bin Droplist Min Droplist

Fit Y Axis FALSE Manual SSE

Chi Sig Lvl Spinner 5 Sturges SPE

Chi BinCount Spinner 11 Mann-Wald

Chi Bin Selection 3 Mann-Wald / 2

IntegralBinCounts FALSE Scott

Freedman Diaconis

x axis marks upper bound of bin

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

C
D

F

Population LN Mean 1000, Stdev 0.75 

Sample

Lognormal (1)

Normal  (4)

Triangular (3)

Beta (2)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

160 544 929 1,314 1,699 2,083 2,468 2,853 3,238 3,622 4,007 4,392

Fr
e

q
u

e
n

cy

Sample

Lognormal (1)

Normal  (4)

Triangular (3)

Beta (2)

Uniform is a Poor 
(0%) fit.

Filter= NONE: , Fit = SSE on Value

Fit Unconstrained

Unitless Sample Lognormal Normal Triangular Beta Sample Ln Nor Tri Beta Tot Curves

Mean 907.09 904.79 907.14 913.97 908.84 Control Plots TRUE TRUE TRUE TRUE TRUE 4 Triggers to

StdDev 736.24 795.97 640.46 650.88 714.41 Constrain Mean N/A FALSE FALSE FALSE FALSE 0 insert "| "

CV 0.812 0.880 0.706 0.712 0.786 Constrain Stdev N/A FALSE FALSE FALSE FALSE 0 0

Low 136.03 -142.05 414.41 Force Min=>Zero N/A N/A FALSE FALSE FALSE 0 0

Mode 522.66 382.95 907.14 136.03 908.84 Encapsulate Sample N/A N/A N/A FALSE FALSE 0 0

High 4,284.86 2,747.94 4,628.40 Nor percentile for 0 10

Alpha 0.305 Nor Result @ Sel % -582.80153

Beta 2.298

Data Count 63 % of Curve <= 0: 7.8% 2.5% None

Standard Error of Estimate 97.05 368.64 325.73 183.99 Curve Rank By SEE N/A 1 4 3 2 RankArray

SEE / Mean 11% 41% 36% 20% 97.0471883

Chi^2 Fit test 20 Bins, Sig 0.05 Good (61%) Poor (2%) Poor (0%) Poor (0%) 368.644175

Second and Third Title 325.72812

Filter= NONE: , Fit = SSE on Value 183.994727

Fit Unconstrained

Min Fit Selection 1 Bin Droplist Min Droplist

Fit Y Axis FALSE Manual SSE

Chi Sig Lvl Spinner 5 Sturges SPE

Chi BinCount Spinner 11 Mann-Wald

Chi Bin Selection 3 Mann-Wald / 2

IntegralBinCounts FALSE Scott

Freedman Diaconis

x axis marks upper bound of bin
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Filter= NONE: , Fit = SSE on Value

Fit Unconstrained

Both examples are
fit to 63 data 
points from a 
known population

 Top image: data is
from defined 
percentiles

Note that the 
LN fit is perfect

Bottom image: 
data percentiles are estimated. 

Note that LN is found to be the best fit 

Similar results when data drawn from 
known  Normal, Triangular or Beta 
populations
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A Seemingly Trivial Difference

In Calculating Percentile Has a Huge Impact 

20

 Random sample 
from a known LN

 Using CoC %tile
 LN is correctly 

identified
 Mean and Stdev

reasonable

 Using Excel %tile
 Beta is identified as 

best fit
 Mean and Stdev

unacceptable
 No fit passes Chi^2

Approved For Public Release

Unitless Sample Lognormal Normal Triangular Beta Sample Ln Nor Tri Beta Tot Curves

Mean 907.09 904.79 907.14 913.97 908.84 Control Plots TRUE TRUE TRUE TRUE TRUE 4 Triggers to

StdDev 736.24 795.97 640.46 650.88 714.41 Constrain Mean N/A FALSE FALSE FALSE FALSE 0 insert "| "

CV 0.812 0.880 0.706 0.712 0.786 Constrain Stdev N/A FALSE FALSE FALSE FALSE 0 0

Low 136.03 -142.05 414.41 Force Min=>Zero N/A N/A FALSE FALSE FALSE 0 0

Mode 522.66 382.95 907.14 136.03 908.84 Encapsulate Sample N/A N/A N/A FALSE FALSE 0 0

High 4,284.86 2,747.94 4,628.40 Nor percentile for 0 10

Alpha 0.305 Nor Result @ Sel % -582.80153

Beta 2.298

Data Count 63 % of Curve <= 0: 7.8% 2.5% None

Standard Error of Estimate 97.05 368.64 325.73 183.99 Curve Rank By SEE N/A 1 4 3 2 RankArray

SEE / Mean 11% 41% 36% 20% 97.0471883

Chi^2 Fit test 10 Bins, Sig 0.05 Good (92%) Poor (0%) Poor (1%) Poor (0%) 368.644175

Second and Third Title 325.72812

Filter= NONE: , Fit = SSE on Value 183.994727

Fit Unconstrained

Min Fit Selection 1 Bin Droplist Min Droplist

Fit Y Axis FALSE Manual SSE

Chi Sig Lvl Spinner 5 Sturges SSPE

Chi BinCount Spinner 11 Mann-Wald

Chi Bin Selection 4 Mann-Wald / 2

IntegralBinCounts FALSE Scott

Freedman Diaconis

x axis marks upper bound of bin
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Filter= NONE: , Fit = SSE on Value

Fit Unconstrained

Unitless Sample Lognormal Normal Triangular Beta Sample Ln Nor Tri Beta Tot Curves

Mean 907.09 903.16 913.26 912.15 847.63 Control Plots TRUE TRUE TRUE TRUE TRUE 4 Triggers to

StdDev 736.24 349.13 490.71 635.55 561.91 Constrain Mean N/A FALSE FALSE FALSE FALSE 0 insert "| "

CV 0.812 0.387 0.537 0.697 0.663 Constrain Stdev N/A FALSE FALSE FALSE FALSE 0 0

Low 136.03 -104.00 -104.00 Force Min=>Zero N/A N/A FALSE FALSE FALSE 0 0

Mode 522.66 732.89 913.26 136.03 847.63 Encapsulate Sample N/A N/A N/A FALSE FALSE 0 0

High 4,284.86 2,704.40 2,704.40 Nor percentile for 0 10

Alpha 1.557 Nor Result @ Sel % -228.28831

Beta 3.039

Data Count 63 % of Curve <= 0: 3.1% 1.6% 2.6%

Standard Error of Estimate 312.94 378.15 304.66 304.25 Curve Rank By SEE N/A 3 4 2 1 RankArray

SEE / Mean 35% 41% 33% 36% 312.935537

Chi^2 Fit test 10 Bins, Sig 0.05 Poor (0%) Poor (0%) Poor (1%) Poor (0%) 378.149355

Second and Third Title 304.657082

Filter= NONE: , Fit = SSE on Value 304.245108

Fit Unconstrained

Min Fit Selection 1 Bin Droplist Min Droplist

Fit Y Axis FALSE Manual SSE

Chi Sig Lvl Spinner 5 Sturges SSPE

Chi BinCount Spinner 11 Mann-Wald

Chi Bin Selection 4 Mann-Wald / 2

IntegralBinCounts FALSE Scott

Freedman Diaconis

x axis marks upper bound of bin
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Fitted Parameters

1. Sample descriptive statistics accounting for excluded outliers

2. “Fitted” mean, standard deviation for Lognormal and Normal

3. “Fitted” low, mode and high for Triangular

4. “Fitted” low, high, alpha and beta for Beta

5. % of the Normal, Triangular, and Beta below zero
(can be forced to be x% for normal, 0 for triangular or beta)
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Fitted Distribution Equations

1. LOGINV(Percentile, Mean, StdDev)

2. NORMINV(Percentile, Mean, StdDev)

3. For Triangular, if 1st equation < mode then use it, else use 2nd

1. (Percentile*(High-Low)*(Mode-Low))^0.5+Low)
2. -(((1-Percentile)*(High-Low)*(High-Mode))^0.5-High)

4. BETAINV(Percentile, Alpha, Beta, LowBeta, HighBeta)

22
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Emerging Results

CB @Risk ACE

Plotted -> Lognormal Lognormal Lognormal
2nd best Beta Normal Beta

3rd best Normal Triangular Triangular

4th best Triangular Beta - No Fit Normal

CB @Risk ACE

Plotted -> Beta Triangular Triangular
2nd best Normal Beta Normal

3rd best Triangular Lognormal Beta

4th best LN - No Fit Normal Lognormal

Distribution Mean Stdev
Sample 907 736

CB LN(903.59, 707,67) 904 708
@Risk LN(906.58, 735.50) 906 736
ACE LN(904.79, 795.97) 905 796
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Utility - Tri

Distribution Mean Stdev
Sample 978 686

CB Beta(-951.4, 3788.9, 4.40, 6.38) 904 708
@Risk Tri(-577.06, 959.65, 2821.70) 1068 695
ACE Tri(-624.38, 868.12, 2690.35) 978 678
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CB @Risk ACE
Plotted -> Triangular Triangular Beta
2nd best Beta Beta Triangular
3rd best Normal Normal Lognormal
4th best Lognormal Lognormal Normal

CB @Risk ACE
Plotted -> Triangular Triangular Beta
2nd best Beta Beta Triangular
3rd best Normal Normal Normal
4th best Lognormal Lognormal Lognormal

Distribution Mean Stdev
Sample 434 193

CB Tri(82.15, 271.29, 1034.55) 463 206
@Risk Tri(103.48, 242.62, 987.97) 445 194
ACE Tri(102.68, 230.57, 967.92) 434 191

Distribution Mean Stdev
Sample 1286 740

CB Tri(147.90, 169.55, 3263.47) 1194 732
@RiskTri(169.55, 169.55, 3266.20) 1202 730
ACE Tri(-15.08, 539.05, 3334.84) 1286 733
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Unitless Sample Lognormal Normal Triangular Beta Sample Ln Nor Tri Beta Tot Curves

Mean 907.09 904.79 907.14 913.97 908.84 Control Plots TRUE TRUE TRUE TRUE TRUE 4 Triggers to

StdDev 736.24 795.97 640.46 650.88 714.41 Constrain Mean N/A FALSE FALSE FALSE FALSE 0 insert "| "

CV 0.812 0.880 0.706 0.712 0.786 Constrain Stdev N/A FALSE FALSE FALSE FALSE 0 0

Low 136.03 -142.05 414.41 Force Min=>Zero N/A N/A FALSE FALSE FALSE 0 0

Mode 522.66 382.95 907.14 136.03 908.84 Encapsulate Sample N/A N/A N/A FALSE FALSE 0 0

High 4,284.86 2,747.94 4,628.40 Nor percentile for 0 10

Alpha 0.305 Nor Result @ Sel % -582.80153

Beta 2.298

Data Count 63 % of Curve <= 0: 7.8% 2.5% None

Standard Error of Estimate 97.05 368.64 325.73 183.99 Curve Rank By SEE N/A 1 4 3 2 RankArray

SEE / Mean 11% 41% 36% 20% 97.0471883

Chi^2 Fit test 20 Bins, Sig 0.05 Good (28%) Poor (1%) Poor (0%) Poor (0%) 368.644175

Second and Third Title 325.72812

Filter= NONE: , Fit = SSE on Value 183.994727

Fit Unconstrained

Min Fit Selection 1 Bin Droplist Min Droplist

Fit Y Axis FALSE Manual SSE

Chi Sig Lvl Spinner 5 Sturges SPE

Chi BinCount Spinner 11 Mann-Wald

Chi Bin Selection 3 Mann-Wald / 2

IntegralBinCounts TRUE Scott

Freedman Diaconis

x axis marks upper bound of bin
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A Compact Result Format
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1. Fits are numbered based on SEE, lowest (best) to highest (worst)

2. Lowest SSE is colored dark green, next best light green
 In this case Lognormal and  Beta respectively
 Chi^2-Test is green when the p-value >= the critical value, red when not 

3. Note that the fitted normal and triangular have a negative tail in this 
example.  Also, the unconstrained triangle high tail falls far short of 
the sample high making this fit undesirable. Beta low is too high!

3
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Conclusions

 Strengths
 Easy to use with transparent calculations
 Compact and comprehensive report 
 User can optimize on one of several objective functions
 Ability to constrain fit to match sample mean, standard deviation or to match 

financial or physical realities for low and/or high bounds
 Can be fully integrated into your Excel workbooks and reports

 Weaknesses
 Fit process relies on estimating percentiles
 Selected Goodness-of-Fit test (CHI^2) relies on bin count for which there is 

no known optimum 
 we settled on Mann-Wald/2 but will use Mann-Wald if bins fall below 6

 Currently only four distributions assessed, but it is easy to add others

 Conclusion 
 Correction for continuity (CoC) method to calculate percentiles is best for 

this application 
 Distribution fit results compare well to commercial tools
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